PICO is an experiment searching for direct evidence of dark matter using a bubble chamber of chlorofluorocarbon (Freon) as the active mass. It is located at SNOLAB in Canada.
It was formed in 2013 from the merger of two similar experiments, PICASSO and COUPP. [1] [2]
PICASSO (Project In CAnada to Search for Supersymmetric Objects, or Projet d'Identification de CAndidats Supersymétriques SOmbres in French) was an international collaboration with members from the Université de Montréal, Queen's University, Indiana University South Bend and Czech Technical University in Prague, University of Alberta, Laurentian University and BTI, Chalk River, Ontario. PICASSO was predominantly sensitive to spin-dependent interactions of Weakly Interacting Massive Particles (WIMPs) with fluorine atoms.
COUPP (Chicagoland Observatory for Underground Particle Physics) was a similar project with members from Fermilab, University of Chicago, and Indiana University. Prototypes were tested in the MINOS experiment far hall, with a scaled-up experiment also operating at SNOLAB. It used trifluoroiodomethane (CF3I) as the medium.
A bubble detector is a radiation sensitive device that uses small droplets of superheated liquid that are suspended in a gel matrix. [3] It uses the principle of a bubble chamber but since only the small droplets can undergo a phase transition at a time, the detector can stay active for much longer periods than a classic bubble chamber. When enough energy is deposited in a droplet by ionizing radiation the superheated droplet undergoes a phase transition and becomes a gas bubble. The PICASSO detectors contain Freon droplets with an average diameter of 200 μm. The bubble development in the detector is accompanied by an acoustic shock wave that is picked up by piezo-electric sensors. The main advantage of the bubble detector technique is that the detector is almost insensitive to background radiation. The detector sensitivity can be adjusted by changing the temperature of the droplets. Freon-loaded detectors are typically operated at temperatures between 15–55 °C (60–130 °F).
The validity of the bubble detector concept has been shown in several publications. [4] There is another similar experiment using this technique in Europe called SIMPLE.
The PICASSO experiment operated at SNOLAB. It had two science runs: first with 2 (results published in 2009) and later with 10 (results published 2012) detector elements. The final configuration of the detector had 32 detector elements (results not published). It found no dark matter signal.
The COUPP collaboration operated a bubble chamber in Fermilab 2011-2012. Particles from a particle accelerator beam were fired at the chamber to evaluate the technology for dark matter detection.
The COUPP collaboration operated a bubble chamber with 3.5 kg CF3I in the MINOS underground area at Fermilab. The results were published January 2011. The COUPP collaboration also operated the same bubble chamber with 4 kg CF3I in SNOLAB from September 2010 to August 2011. SNOLAB-results (also called COUPP-4 kg) were published in 2012. No dark matter was detected.
PICASSO reports results (November 2009) for spin-dependent WIMP interactions on 19F. No dark matter signal has been found, but for WIMP masses of 24 GeV/c2 new stringent limits have been obtained on the spin-dependent cross section for WIMP scattering on 19F of 13.9 pb (90% CL). This result has been converted into a cross section limit for WIMP interactions on protons of 0.16 pb (90% CL). The obtained limits restrict recent interpretations of the DAMA/LIBRA annual modulation effect in terms of spin dependent interactions. [5]
New results were published in May 2012, using 10 detectors with total exposure 14 kg·d, to constrain low-mass WIMP interaction on 19F. [6] The best spin-dependent limits were obtained for a 20 GeV/c2 WIMP mass: 0.032 pb (90% C.L.) for proton cross section. For the Spin-independent near 7 GeV low mass region cross section: 1.41×10−4 pb upper limit (90% C.L.)
The PICO project started when the PICASSO and COUPP groups merged in 2013. The PICO experiment is located in SNOLAB, Canada, in a mine at the depth of 2 km. As of 2018, the PICO collaboration has operated two experiments in SNOLAB: a bubble chamber called PICO-2L and a chamber called PICO-60 (formerly named COUPP-60), where the numbers 2 and 60 refer to the volume (in litres) of the target material in each chamber. The target material used was C3F8. A larger version of the experiment is being planned as of 2018. The larger version would have a target volume of 250-500 litres (called PICO-250 or PICO-500, respectively). [7]
PICO-2L: PICO-2L was the first bubble chamber to start operation in October 2013. Its science runs took place October 2013-May 2014 (science run 1) and February 2015-November 2015 (science run 2). PICO-2L was decommissioned in 2016.
PICO-60: The PICO-60 followed PICO-2L. It started data-taking in 2013 and this first science run continued until May 2014. For this first run, the detector was filled with CF3I and the detector only used about half its capacity in terms if active volume (the active volume was 25 litres). After this initial run, the detector was refurbished, the target material was switched to C3F8 and the active volume was increased to full capacity (53 litres). The refurbishing work was completed and the second science run started summer 2016. The second science run ended in the summer of 2017, after which PICO-60 was decommissioned.
PICO-40L: The PICO-60 experimental station is used for a new bubble chamber called PICO-40L. The PICO-40L is a new type of bubble chamber whose technical structure eliminates the need for a buffer liquid that is a source of measurement noise. The PICO-40L began construction at SNOLAB in 2019 and was finished in 2020. Currently new systems of the detector are being commissioned. [8]
PICO-500L: PICO-500 is the next generation detector that builds upon the principle demonstrated by PICO-2L, -60, and -40L. The scaled-up detector will have an active volume of about 250 litres and will use a synthetic quartz vessel, just like PICO-2L, PICO-60 and PICO-40L before it. The PICO collaboration is currently working on the final design of the PICO-500 design, focusing on the inner vessel and the pressure vessel. PICO is planning to operate PICO-500 with C3F8 to achieve a world leading sensitivity for dark matter coupling to ordinary matter though its spin. The experiment has received full funding from CFI and the Canadian provinces. SNOLAB has approved the conceptual design of the experiment and allocated space in the underground facility for PICO-500 in the cube hall area of the lab. [9]
The PICO collaboration also has a number of bubble chambers used for calibration purposes (not for dark matter detection), like the CIRTE (COUPP Iodine Recoil Efficiency) and PICO-0.1 chambers.
Weakly interacting massive particles (WIMPs) are hypothetical particles that are one of the proposed candidates for dark matter.
A bubble chamber is a vessel filled with a superheated transparent liquid used to detect electrically charged particles moving through it. It was invented in 1952 by Donald A. Glaser, for which he was awarded the 1960 Nobel Prize in Physics. Supposedly, Glaser was inspired by the bubbles in a glass of beer; however, in a 2006 talk, he refuted this story, although saying that while beer was not the inspiration for the bubble chamber, he did experiments using beer to fill early prototypes.
The Cryogenic Dark Matter Search (CDMS) is a series of experiments designed to directly detect particle dark matter in the form of Weakly Interacting Massive Particles. Using an array of semiconductor detectors at millikelvin temperatures, CDMS has at times set the most sensitive limits on the interactions of WIMP dark matter with terrestrial materials. The first experiment, CDMS I, was run in a tunnel under the Stanford University campus. It was followed by CDMS II experiment in the Soudan Mine. The most recent experiment, SuperCDMS, was located deep underground in the Soudan Mine in northern Minnesota and collected data from 2011 through 2015. The series of experiments continues with SuperCDMS SNOLAB, an experiment located at the SNOLAB facility near Sudbury, Ontario in Canada that started construction in 2018 and is expected to start data taking in early 2020s.
The XENON dark matter research project, operated at the Italian Gran Sasso National Laboratory, is a deep underground detector facility featuring increasingly ambitious experiments aiming to detect hypothetical dark matter particles. The experiments aim to detect particles in the form of weakly interacting massive particles (WIMPs) by looking for rare nuclear recoil interactions in a liquid xenon target chamber. The current detector consists of a dual phase time projection chamber (TPC).
The UK Dark Matter Collaboration (UKDMC) (1987–2007) was an experiment to search for Weakly interacting massive particles (WIMPs). The consortium consisted of astrophysicists and particle physicists from the United Kingdom, who conducted experiments with the ultimate goal of detecting rare scattering events which would occur if galactic dark matter consists largely of a new heavy neutral particle. Detectors were set up 1,100 m (3,600 ft) underground in a halite seam at the Boulby Mine in North Yorkshire.
SNOLAB is a Canadian underground science laboratory specializing in neutrino and dark matter physics. Located 2 km below the surface in Vale's Creighton nickel mine near Sudbury, Ontario, SNOLAB is an expansion of the existing facilities constructed for the original Sudbury Neutrino Observatory (SNO) solar neutrino experiment.
The ArDM Experiment was a particle physics experiment based on a liquid argon detector, aiming at measuring signals from WIMPs, which may constitute the Dark Matter in the universe. Elastic scattering of WIMPs from argon nuclei is measurable by observing free electrons from ionization and photons from scintillation, which are produced by the recoiling nucleus interacting with neighbouring atoms. The ionization and scintillation signals can be measured with dedicated readout techniques, which constituted a fundamental part of the detector.
DEAP is a direct dark matter search experiment which uses liquid argon as a target material. DEAP utilizes background discrimination based on the characteristic scintillation pulse-shape of argon. A first-generation detector (DEAP-1) with a 7 kg target mass was operated at Queen's University to test the performance of pulse-shape discrimination at low recoil energies in liquid argon. DEAP-1 was then moved to SNOLAB, 2 km below Earth's surface, in October 2007 and collected data into 2011.
The Large Underground Xenon experiment (LUX) aimed to directly detect weakly interacting massive particle (WIMP) dark matter interactions with ordinary matter on Earth. Despite the wealth of (gravitational) evidence supporting the existence of non-baryonic dark matter in the Universe, dark matter particles in our galaxy have never been directly detected in an experiment. LUX utilized a 370 kg liquid xenon detection mass in a time-projection chamber (TPC) to identify individual particle interactions, searching for faint dark matter interactions with unprecedented sensitivity.
The Directional Recoil Identification from Tracks (DRIFT) detector is a low pressure negative ion time projection chamber (NITPC) designed to detect weakly interacting massive particles (WIMPs) - a prime dark matter candidate.
The European Underground Rare Event Calorimeter Array (EURECA) is a planned dark matter search experiment using cryogenic detectors and an absorber mass of up to 1 tonne. The project will be built in the Modane Underground Laboratory and will bring together researchers working on the CRESST and EDELWEISS experiments.
EDELWEISS is a dark matter search experiment located at the Modane Underground Laboratory in France. The experiment uses cryogenic detectors, measuring both the phonon and ionization signals produced by particle interactions in germanium crystals. This technique allows nuclear recoils events to be distinguished from electron recoil events.
The Dark Matter Time Projection Chamber (DMTPC) is an experiment for direct detection of weakly interacting massive particles (WIMPs), one of the most favored candidates for dark matter. The experiment uses a low-pressure time projection chamber in order to extract the original direction of potential dark matter events. The collaboration includes physicists from the Massachusetts Institute of Technology (MIT), Boston University (BU), Brandeis University, and Royal Holloway University of London. Several prototype detectors have been built and tested in laboratories at MIT and BU. The collaboration took its first data in an underground laboratory at the Waste Isolation Pilot Plant (WIPP) site near Carlsbad, New Mexico in Fall, 2010.
SIMPLE is an experiment search for direct evidence of dark matter. It is located in a 61 m3 cavern at the 500 level of the Laboratoire Souterrain à Bas Bruit near Apt in southern France. The experiment is predominantly sensitive to spin-dependent interactions of weakly interacting massive particles.
The ZEPLIN-III dark matter experiment attempted to detect galactic WIMPs using a 12 kg liquid xenon target. It operated from 2006 to 2011 at the Boulby Underground Laboratory in Loftus, North Yorkshire. This was the last in a series of xenon-based experiments in the ZEPLIN programme pursued originally by the UK Dark Matter Collaboration (UKDMC). The ZEPLIN-III project was led by Imperial College London and also included the Rutherford Appleton Laboratory and the University of Edinburgh in the UK, as well as LIP-Coimbra in Portugal and ITEP-Moscow in Russia. It ruled out cross-sections for elastic scattering of WIMPs off nucleons above 3.9 × 10−8 pb from the two science runs conducted at Boulby.
The Particle and Astrophysical Xenon Detector, or PandaX, is a dark matter detection experiment at China Jinping Underground Laboratory (CJPL) in Sichuan, China. The experiment occupies the deepest underground laboratory in the world, and is among the largest of its kind.
The Cryogenic Low-Energy Astrophysics with Noble liquids (CLEAN) experiment by the DEAP/CLEAN collaboration is searching for dark matter using noble gases at the SNOLAB underground facility. CLEAN has studied neon and argon in the MicroCLEAN prototype, and running the MiniCLEAN detector to test a multi-ton design.
The LUX-ZEPLIN (LZ) Experiment is a next-generation dark matter direct detection experiment hoping to observe weakly interacting massive particles (WIMP) scatters on nuclei. It was formed in 2012 by combining the LUX and ZEPLIN groups. It is currently a collaboration of 30 institutes in the US, UK, Portugal and South Korea. The experiment is located at the Sanford Underground Research Facility (SURF) in South Dakota, and is managed by DOE's Lawrence Berkeley National Lab.
Jocelyn Monroe is an American experimental particle physicist who is a professor at Royal Holloway, University of London. Her research considers the development of novel detectors as part of the search for dark matter. In 2016 she was honoured with the Breakthrough Prize in Fundamental Physics for her work on the Sudbury Neutrino Observatory.
Direct detection of dark matter is the science of attempting to directly measure dark matter collisions in Earth-based experiments. Modern astrophysical measurements, such as from the Cosmic Microwave Background, strongly indicate that 85% of the matter content of the universe is unaccounted for. Although the existence of dark matter is widely believed, what form it takes or its precise properties has never been determined. There are three main avenues of research to detect dark matter: attempts to make dark matter in accelerators, indirect detection of dark matter annihilation, and direct detection of dark matter in terrestrial labs. The founding principle of direct dark matter detection is that since dark matter is known to exist in the local universe, as the Earth, Solar System, and the Milky Way Galaxy carve out a path through the universe they must intercept dark matter, regardless of what form it takes.
The PICASSO and COUPP collaborations merged in 2013 to form the PICO collaboration.
{{cite book}}
: Missing or empty |title=
(help)