Mixed dark matter

Last updated

Mixed dark matter (MDM) is a dark matter (DM) model proposed during the late 1990s. [1]

Mixed dark matter is also called hot + cold dark matter. The most abundant form of dark matter is cold dark matter, almost one fourth of the energy contents of the Universe. Neutrinos are the only known particles whose Big-Bang thermal relic should compose at least a fraction of Hot dark matter (HDM), albeit other candidates are speculated to exist. [2] In the early 1990s, the power spectrum of fluctuations in the galaxy clustering did not agree entirely with the predictions for a standard cosmology built around pure cold DM.[ further explanation needed ] Mixed dark matter with a composition of about 80% cold and 20% hot (neutrinos) was investigated and found to agree better with observations. This large amount of HDM was made obsolete by the discovery in 1998 of the acceleration of universal expansion, which eventually led to the dark energy + dark matter paradigm of this decade.[ citation needed ]

The cosmological effects of cold DM are almost opposite to the hot DM effects. Given that cold DM promotes the growth of large scale structures, it is often believed to be composed of Weakly interacting massive particles (WIMPs). Conversely hot DM suffers of free-streaming for most of the history of the Universe, washing-out the formation of small scales. In other words, the mass of hot DM particles is too small to produce the observed gravitationally bounded objects in the Universe. For that reason, the hot DM abundance is constrained by Cosmology to less than one percent of the Universe contents.

The Mixed Dark Matter scenario recovered relevance when DM was proposed to be a thermal relic of a Bose–Einstein condensate made of very light bosonic particles, as light as neutrinos or even lighter like the Axion. This cosmological model predicts that cold DM is made of many condensed particles, while a small fraction of these particles resides in excited energetic states contributing to hot DM. [3]

Related Research Articles

Physical cosmology Branch of cosmology which studies mathematical models of the universe

Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of fundamental questions about its origin, structure, evolution, and ultimate fate. Cosmology as a science originated with the Copernican principle, which implies that celestial bodies obey identical physical laws to those on Earth, and Newtonian mechanics, which first allowed those physical laws to be understood.

Cosmic microwave background Electromagnetic radiation as a remnant from an early stage of the universe in Big Bang cosmology

In Big Bang cosmology the cosmic microwave background is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all space. It is an important source of data on the early universe because it is the oldest electromagnetic radiation in the universe, dating to the epoch of recombination when the first atoms were formed. With a traditional optical telescope, the space between stars and galaxies is completely dark. However, a sufficiently sensitive radio telescope shows a faint background noise, or glow, almost uniform, that is not associated with any star, galaxy, or other object. This glow is strongest in the microwave region of the radio spectrum. The accidental discovery of the CMB in 1965 by American radio astronomers Arno Penzias and Robert Wilson was the culmination of work initiated in the 1940s, and earned the discoverers the 1978 Nobel Prize in Physics.

Dark matter Hypothetical form of matter comprising most of the matter in the universe

Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not absorb, reflect, or emit electromagnetic radiation and is, therefore, difficult to detect. Various astrophysical observations – including gravitational effects which cannot be explained by currently accepted theories of gravity unless more matter is present than can be seen – imply dark matter's presence. For this reason, most experts think that dark matter is abundant in the universe and has had a strong influence on its structure and evolution.

Neutrino Elementary particle with extremely low mass that interacts only via the weak force and gravity

A neutrino is a fermion that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small (-ino) that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles excluding massless particles. The weak force has a very short range, the gravitational interaction is extremely weak, and neutrinos do not participate in the strong interaction. Thus, neutrinos typically pass through normal matter unimpeded and undetected.

Universe All of space and time and their contents

The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. According to this theory, space and time emerged together 13.787±0.020 billion years ago, and the universe has been expanding ever since. While the spatial size of the entire universe is unknown, it is possible to measure the size of the observable universe, which is approximately 93 billion light-years in diameter at the present day.

Weakly interacting massive particles (WIMPs) are hypothetical particles that are one of the proposed candidates for dark matter.

In physics, quintessence is a hypothetical form of dark energy, more precisely a scalar field, postulated as an explanation of the observation of an accelerating rate of expansion of the universe. The first example of this scenario was proposed by Ratra and Peebles (1988) and Wetterich (1988). The concept was expanded to more general types of time-varying dark energy, and the term "quintessence" was first introduced in a 1998 paper by Robert R. Caldwell, Rahul Dave and Paul Steinhardt. It has been proposed by some physicists to be a fifth fundamental force. Quintessence differs from the cosmological constant explanation of dark energy in that it is dynamic; that is, it changes over time, unlike the cosmological constant which, by definition, does not change. Quintessence can be either attractive or repulsive depending on the ratio of its kinetic and potential energy. Those working with this postulate believe that quintessence became repulsive about ten billion years ago, about 3.5 billion years after the Big Bang.

In cosmology and physics, cold dark matter (CDM) is a hypothetical type of dark matter. According to the current standard model of cosmology, Lambda-CDM model, approximately 27% of the universe is dark matter and 68% is dark energy, with only a small fraction being the ordinary baryonic matter that composes stars, planets, and living organisms. Cold refers to the fact that the dark matter moves slowly compared to the speed of light, while dark indicates that it interacts very weakly with ordinary matter and electromagnetic radiation. Proposed candidates for CDM include weakly interacting massive particles, primordial black holes, and axions.

Hot dark matter (HDM) is a theoretical form of dark matter which consists of particles that travel with ultrarelativistic velocities.

An axion is a hypothetical elementary particle postulated by the Peccei–Quinn theory in 1977 to resolve the strong CP problem in quantum chromodynamics (QCD). If axions exist and have low mass within a specific range, they are of interest as a possible component of cold dark matter.

Lambda-CDM model Model of Big Bang cosmology

The ΛCDM or Lambda-CDM model is a parameterization of the Big Bang cosmological model in which the universe contains three major components: first, a cosmological constant denoted by Lambda associated with dark energy; second, the postulated cold dark matter ; and third, ordinary matter. It is frequently referred to as the standard model of Big Bang cosmology because it is the simplest model that provides a reasonably good account of the following properties of the cosmos:

Structure formation Formation of galaxies, galaxy clusters and larger structures from small early density fluctuations

In physical cosmology, structure formation is the formation of galaxies, galaxy clusters and larger structures from small early density fluctuations. The universe, as is now known from observations of the cosmic microwave background radiation, began in a hot, dense, nearly uniform state approximately 13.8 billion years ago. However, looking at the night sky today, structures on all scales can be seen, from stars and planets to galaxies. On even larger scales, galaxy clusters and sheet-like structures of galaxies are separated by enormous voids containing few galaxies. Structure formation attempts to model how these structures were formed by gravitational instability of small early ripples in spacetime density or another emergence.

Sterile neutrinos are hypothetical particles that are believed to interact only via gravity and not via any of the other fundamental interactions of the Standard Model. The term sterile neutrino is used to distinguish them from the known active neutrinos in the Standard Model, which carry an isospin charge of ±+1/ 2  under the weak interaction. It typically refers to neutrinos with right-handed chirality, which may be added to the Standard Model. Particles that possess the quantum numbers of sterile neutrinos and masses great enough such that they do not interfere with the current theory of Big Bang Nucleosynthesis are often called neutral heavy leptons (NHLs) or heavy neutral leptons (HNLs).

Cosmic neutrino background

The cosmic neutrino background is the universe's background particle radiation composed of neutrinos. They are sometimes known as relic neutrinos.

Physics beyond the Standard Model Theories trying to extend known physics

Physics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of the standard model, the strong CP problem, neutrino oscillations, matter–antimatter asymmetry, and the nature of dark matter and dark energy. Another problem lies within the mathematical framework of the Standard Model itself: the Standard Model is inconsistent with that of general relativity, and one or both theories break down under certain conditions, such as spacetime singularities like the Big Bang and black hole event horizons.

Warm dark matter (WDM) is a hypothesized form of dark matter that has properties intermediate between those of hot dark matter and cold dark matter, causing structure formation to occur bottom-up from above their free-streaming scale, and top-down below their free streaming scale. The most common WDM candidates are sterile neutrinos and gravitinos. The WIMPs, when produced non-thermally could be candidates for warm dark matter. In general, however the thermally produced WIMPs are cold dark matter candidates.

Chronology of the universe History and future of the universe

The chronology of the universe describes the history and future of the universe according to Big Bang cosmology.

Dark energy Unknown property in cosmology that causes the expansion of the universe to accelerate

In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the universe does not expand at a constant rate; rather, the universe's expansion is accelerating. Understanding the universe's evolution requires knowledge of its starting conditions and composition. Before these observations, scientists thought that all forms of matter and energy in the universe would only cause the expansion to slow down over time. Measurements of the cosmic microwave background (CMB) suggest the universe began in a hot Big Bang, from which general relativity explains its evolution and the subsequent large-scale motion. Without introducing a new form of energy, there was no way to explain how scientists could measure an accelerating universe. Since the 1990s, dark energy has been the most accepted premise to account for the accelerated expansion. As of 2021, there are active areas of cosmology research to understand the fundamental nature of dark energy. Assuming that the lambda-CDM model of cosmology is correct, the best current measurements indicate that dark energy contributes 68% of the total energy in the present-day observable universe. The mass–energy of dark matter and ordinary (baryonic) matter contributes 26% and 5%, respectively, and other components such as neutrinos and photons contribute a very small amount. Dark energy's density is very low, much less than the density of ordinary matter or dark matter within galaxies. However, it dominates the universe's mass-energy content because it is uniform across space.

Light dark matter Dark matter weakly interacting massive particles candidates with masses less than 1 GeV

Light dark matter, in astronomy and cosmology, are dark matter weakly interacting massive particles (WIMPS) candidates with masses less than 1 GeV. These particles are heavier than warm dark matter and hot dark matter, but are lighter than the traditional forms of cold dark matter, such as Massive Compact Halo Objects (MACHOs). The Lee-Weinberg bound limits the mass of the favored dark matter candidate, WIMPs, that interact via the weak interaction to GeV. This bound arises as follows. The lower the mass of WIMPs is, the lower the annihilation cross section, which is of the order , where m is the WIMP mass and M the mass of the Z-boson. This means that low mass WIMPs, which would be abundantly produced in the early universe, freeze out much earlier and thus at a higher temperature, than higher mass WIMPs. This leads to a higher relic WIMP density. If the mass is lower than GeV the WIMP relic density would overclose the universe.

Scalar field dark matter Classical, minimally coupled, scalar field postulated to account for the inferred dark matter

In astrophysics and cosmology scalar field dark matter is a classical, minimally coupled, scalar field postulated to account for the inferred dark matter.

References

  1. Andrew R Liddle, David H Lyth (1993). [astro-ph/9304017] Inflation and Mixed Dark Matter Models
  2. Bogdan A. Dobrescu and Don Lincoln: A Hidden World of Complex Dark Matter Could Be Uncovered. Scientific American. Volume 313, Issue 1. pp. 20-27.
  3. I. Rodríguez Montoya (2013). "Cosmic Bose dark matter". Phys. Rev. D. 87 (2): 025009. arXiv: 1110.2751 . Bibcode:2013PhRvD..87b5009R. doi:10.1103/PhysRevD.87.025009. S2CID   119292563.