Dark radiation

Last updated

Dark radiation (also dark electromagnetism) [1] is a postulated type of radiation that mediates interactions of dark matter.

Dark matter Hypothetical form of matter comprising most of the matter in the universe

Dark matter is a hypothetical form of matter that is thought to account for approximately 85% of the matter in the universe, and about a quarter of its total energy density. The majority of dark matter is thought to be non-baryonic in nature, possibly being composed of some as-yet undiscovered subatomic particles. Its presence is implied in a variety of astrophysical observations, including gravitational effects that cannot be explained unless more matter is present than can be seen. For this reason, most experts think dark matter to be ubiquitous in the universe and to have had a strong influence on its structure and evolution. Dark matter is called dark because it does not appear to interact with observable electromagnetic radiation, such as light, and is thus invisible to the entire electromagnetic spectrum, making it extremely difficult to detect using usual astronomical equipment.

By analogy to the way photons mediate electromagnetic interactions between particles in the Standard Model (called baryonic matter in cosmology), dark radiation is proposed to mediate interactions between dark matter particles. [1] Similar to dark matter particles, the hypothetical dark radiation does not interact with Standard Model particles.

Standard Model theory of particle physics

The Standard Model of particle physics is the theory describing three of the four known fundamental forces in the universe, as well as classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists around the world, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, confirmation of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.

There has been no notable evidence for the existence of such radiation, but since baryonic matter contains multiple interacting particle types, it is reasonable to suppose that dark matter does also. Moreover, it has been pointed out recently that the cosmic microwave background data seems to suggest that the number of effective neutrino degrees of freedom is more than 3.046, which is slightly more than the standard case for 3 types of neutrino. [2] This extra degree of freedom could arise from having a non-trivial amount of dark radiation in the universe. One possible candidate for dark radiation is the sterile neutrino.

Baryon proton or any other hadron that is composed of three quarks

In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks. Baryons belong to the hadron family of particles, which are the quark-based particles. They are also classified as fermions, i.e., they have half-integer spin.

Cosmic microwave background Electromagnetic radiation as a remnant from an early stage of the universe in Big Bang cosmology

The cosmic microwave background is electromagnetic radiation as a remnant from an early stage of the universe in Big Bang cosmology. In older literature, the CMB is also variously known as cosmic microwave background radiation (CMBR) or "relic radiation". The CMB is a faint cosmic background radiation filling all space that is an important source of data on the early universe because it is the oldest electromagnetic radiation in the universe, dating to the epoch of recombination. With a traditional optical telescope, the space between stars and galaxies is completely dark. However, a sufficiently sensitive radio telescope shows a faint background noise, or glow, almost isotropic, that is not associated with any star, galaxy, or other object. This glow is strongest in the microwave region of the radio spectrum. The accidental discovery of the CMB in 1964 by American radio astronomers Arno Penzias and Robert Wilson was the culmination of work initiated in the 1940s, and earned the discoverers the 1978 Nobel Prize in Physics.

Neutrino Elementary particle with very low mass that interacts only via the weak force and gravity

A neutrino is a fermion that interacts only via the weak subatomic force and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small (-ino) that it was long thought to be zero. The mass of the neutrino is much smaller than that of the other known elementary particles. The weak force has a very short range, the gravitational interaction is extremely weak, and neutrinos, as leptons, do not participate in the strong interaction. Thus, neutrinos typically pass through normal matter unimpeded and undetected.

See also

Dark photon Hypothetical force carrier particle connected to dark matter

The dark photon is a hypothetical hidden sector particle, proposed as a force carrier similar to the photon of electromagnetism but potentially connected to dark matter. In a minimal scenario, this new force can be introduced by extending the gauge group of the Standard Model of Particle Physics with a new abelian U(1) gauge symmetry. The corresponding new spin-1 gauge boson can then couple very weakly to electrically charged particles through kinetic mixing with the ordinary photon and could thus be detected. Other types of couplings beyond kinetic mixing are also possible.

Dual photon A hypothetical elementary particle that is a dual of the photon under electric-magnetic duality

In theoretical physics, the dual photon is a hypothetical elementary particle that is a dual of the photon under electric-magnetic duality which is predicted by some theoretical models and some results of M-theory in eleven dimensions.

A photino is a hypothetical subatomic particle, the fermion WIMP superpartner of the photon predicted by supersymmetry. It is an example of a gaugino. Even though no photino has ever been observed so far, it is one of the candidates for the lightest stable particle in the universe. It is proposed that photinos are produced by sources of ultra-high-energy cosmic rays.

Related Research Articles

In physics, the fundamental interactions, also known as fundamental forces, are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist: the gravitational and electromagnetic interactions, which produce significant long-range forces whose effects can be seen directly in everyday life, and the strong and weak interactions, which produce forces at minuscule, subatomic distances and govern nuclear interactions. Some scientists speculate that a fifth force might exist, but this is neither widely accepted nor proven.

Elementary particle quantum particle having no known substructure; quark, electron, photon, etc.

In particle physics, an elementary particle or fundamental particle is a subatomic particle with no sub structure, thus not composed of other particles. Particles currently thought to be elementary include the fundamental fermions, which generally are "matter particles" and "antimatter particles", as well as the fundamental bosons, which generally are "force particles" that mediate interactions among fermions. A particle containing two or more elementary particles is a composite particle.

Weak interaction the fundamental interaction responsible for beta decay and nuclear fission

In particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is the mechanism of interaction between subatomic particles that is responsible for the radioactive decay of atoms. The weak interaction serves an essential role in nuclear fission, and the theory regarding it in terms of both its behavior and effects is sometimes called quantum flavordynamics (QFD). However, the term QFD is rarely used because the weak force is better understood in terms of electroweak theory (EWT). In addition to this, QFD is related to quantum chromodynamics (QCD), which deals with the strong interaction, and quantum electrodynamics (QED), which deals with the electromagnetic force.

Weakly interacting massive particles (WIMPs) are hypothetical particles that are thought to constitute dark matter. There exists no clear definition of a WIMP, but broadly, a WIMP is a new elementary particle which interacts via gravity and any other force, potentially not part of the standard model itself, which is as weak as or weaker than the weak nuclear force, but also non-vanishing in its strength. A WIMP must also have been produced thermally in the early Universe, similarly to the particles of the standard model according to Big Bang cosmology, and usually will constitute cold dark matter. Obtaining the correct abundance of dark matter today via thermal production requires a self-annihilation cross section of , which is roughly what is expected for a new particle in the 100 GeV mass range that interacts via the electroweak force. Because supersymmetric extensions of the standard model of particle physics readily predict a new particle with these properties, this apparent coincidence is known as the "WIMP miracle", and a stable supersymmetric partner has long been a prime WIMP candidate. However, recent null results from direct-detection experiments along with the failure to produce evidence of supersymmetry in the Large Hadron Collider (LHC) experiment has cast doubt on the simplest WIMP hypothesis. Experimental efforts to detect WIMPs include the search for products of WIMP annihilation, including gamma rays, neutrinos and cosmic rays in nearby galaxies and galaxy clusters; direct detection experiments designed to measure the collision of WIMPs with nuclei in the laboratory, as well as attempts to directly produce WIMPs in colliders, such as the LHC.

In cosmology and physics, cold dark matter (CDM) is a hypothetical type of dark matter. Observations indicate that approximately 85% of the matter in the universe is dark matter, with only a small fraction being the ordinary baryonic matter that composes stars, planets, and living organisms. Cold refers to the fact that the dark matter moves slowly compared to the speed of light, while dark indicates that it interacts very weakly with ordinary matter and electromagnetic radiation.

Hot dark matter (HDM) is a theoretical form of dark matter which consists of particles that travel with ultrarelativistic velocities.

The W and Z bosons are together known as the weak or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are
W+
,
W
, and
Z
. The W bosons have either a positive or negative electric charge of 1 elementary charge and are each other's antiparticles. The Z boson is electrically neutral and is its own antiparticle. The three particles have a spin of 1. The W bosons have a magnetic moment, but the Z has none. All three of these particles are very short-lived, with a half-life of about 3×10−25 s. Their experimental discovery was a triumph for what is now known as the Standard Model of particle physics.

In physics, mirror matter, also called shadow matter or Alice matter, is a hypothetical counterpart to ordinary matter.

Structure formation The formation of galaxies, galaxy clusters and larger structures from small early density fluctuations

In physical cosmology, structure formation is the formation of galaxies, galaxy clusters and larger structures from small early density fluctuations. The universe, as is now known from observations of the cosmic microwave background radiation, began in a hot, dense, nearly uniform state approximately 13.8 billion years ago. However, looking in the sky today, we see structures on all scales, from stars and planets to galaxies and, on still larger scales, galaxy clusters and sheet-like structures of galaxies separated by enormous voids containing few galaxies. Structure formation attempts to model how these structures formed by gravitational instability of small early density ripples.

Sterile neutrinos are hypothetical particles that interact only via gravity and do not interact via any of the fundamental interactions of the Standard Model. The term sterile neutrino is used to distinguish them from the known active neutrinos in the Standard Model, which are charged under the weak interaction.

In particle physics, the hidden sector, also known as the "dark sector", is the hypothetical collections of yet-unobserved quantum fields and their corresponding hypothetical particles. The interactions between the hidden sector particles and the Standard Model particles are weak, indirect, and typically mediated through gravity or other new particles. Examples for the new mediating particles include dark photon, sterile neutrino, and axion.

Neutral current

Weak neutral current interactions are one of the ways in which subatomic particles can interact by means of the weak force. These interactions are mediated by the
Z
boson. The discovery of weak neutral currents was a significant step toward the unification of electromagnetism and the weak force into the electroweak force, and led to the discovery of the W and Z bosons.

Matter substance that has rest mass and volume, or several other definitions

In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic particles, and in everyday as well as scientific usage, "matter" generally includes atoms and anything made up of them, and any particles that act as if they have both rest mass and volume. However it does not include massless particles such as photons, or other energy phenomena or waves such as light or sound. Matter exists in various states. These include classical everyday phases such as solid, liquid, and gas – for example water exists as ice, liquid water, and gaseous steam – but other states are possible, including plasma, Bose–Einstein condensates, fermionic condensates, and quark–gluon plasma.

In quantum mechanics, a boson is a particle that follows Bose–Einstein statistics. Bosons make up one of the two classes of particles, the other being fermions. The name boson was coined by Paul Dirac to commemorate the contribution of Indian physicist and professor of physics at University of Calcutta and at University of Dhaka, Satyendra Nath Bose in developing, with Albert Einstein, Bose–Einstein statistics—which theorizes the characteristics of elementary particles.

References

  1. 1 2 Ackerman, Lotty; et al. (2008). "Dark Matter and Dark Radiation". arXiv: 0810.5126 . Bibcode:2009PhRvD..79b3519A. doi:10.1103/PhysRevD.79.023519.
  2. "The Case for Dark Radiation" (PDF). Maria Archidiacono. Retrieved 18 June 2012.