This article was nominated for deletion. The discussion was closed on 6 September 2023 with a consensus to merge the content into the article Time projection chamber . If you find that such action has not been taken promptly, please consider assisting in the merger instead of re-nominating the article for deletion. To discuss the merger, please use the destination article's talk page.(September 2023) |
This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
The Dark Matter Time Projection Chamber (DMTPC) is an experiment for direct detection of weakly interacting massive particles (WIMPs), one of the most favored candidates for dark matter. The experiment uses a low-pressure time projection chamber in order to extract the original direction of potential dark matter events. The collaboration includes physicists from the Massachusetts Institute of Technology (MIT), Boston University (BU), Brandeis University, and Royal Holloway University of London. Several prototype detectors have been built and tested in laboratories at MIT and BU. The collaboration took its first data in an underground laboratory at the Waste Isolation Pilot Plant (WIPP) site near Carlsbad, New Mexico in Fall, 2010.
The DMTPC detector consists of a TPC filled with low pressure CF4 gas. Charged particles incident on the gas are slowed and eventually stopped, leaving a trail of free electrons and ionized molecules. The electrons are drifted by an electric field toward an amplification region. Instead of using MWPC endplates for amplification and event readout, as in the traditional TPC design, the DMTPC amplification region consists of a metal wire mesh separated from a copper anode with a high electric field between them. This creates a more uniform electric field in order to preserve the shape of the original track during amplification. The avalanche of electrons also creates a great deal of scintillation light, which passes through the wire mesh. Some of this light is collected by a CCD camera located outside the main detector volume. This results in a two dimensional image of the ionization signal of the track as it appeared on the amplification plane. Information about the charged particle, including its direction of motion within the detector, can be reconstructed from the CCD readout. Additional track information is obtained from readout of the charge signal on the anode plane.
The group has constructed and operated a number of detectors, such as the 10-L DMTPC (with 10 litres of volume) detector underground at Waste Isolation Pilot Plant in New Mexico, the 4Shooter or 4sh or FourShooter (with 20 litres of volume) detector above surface at MIT and the Canary Chamber (with less than 1 litre of volume). All the detectors operated have been for prototype development purposes. There was a plan to move the 4Shooter detector to WIPP but an accident at the WIPP underground laboratory February 2014 cast doubt on this plan and it is not known whether the plan was actually enacted.
The largest existing prototype detectors each have a total of 20 L of CF4 gas within the drift region, where measurable events will occur. The group also plans to eventually construct a detector with a volume of 1 m3 called DMTPC m3 (also called DMTPCino in some sources).
In a proposed dark matter event, a WIMP enters the detector volume and interacts with one of the atoms in the CF4, typically fluorine. While the WIMP does not directly leave a track, the momentum transfer of the interaction causes the atom to recoil, and its ionization track, with a typical range of a few millimeters, may be detected. CF4 gas is used because the most common fluorine isotope, 19F, is believed to be an excellent target nucleus for setting spin-dependent WIMP-nucleon scattering. If the recoiling ion is energetic enough, the direction of the incoming WIMP may be extrapolated from the direction of the recoil.
Because of the motion of the solar system around the center of the galaxy, many physicists believe that the particles comprising the dark matter halo will appear to originate from a particular direction in the sky roughly corresponding to the position of the constellation Cygnus. If this is true, the DMTPC group hope to be able to use the directional track information to statistically confirm the existence of dark matter, even in the presence of non-dark matter backgrounds which are believed to have a different directional signal. Several other groups developing low pressure TPC dark matter detectors with directional sensitivity exist, including DRIFT, NEWAGE, and MIMAC. Additionally, dark matter searches such as COUPP and NEWAGE also use fluorine as the principal target nucleus for spin-dependent interactions.
DMTPC published first results from a surface run in 2010, setting a spin-dependent cross section limit. [1]
Weakly interacting massive particles (WIMPs) are hypothetical particles that are one of the proposed candidates for dark matter.
In physics, a time projection chamber (TPC) is a type of particle detector that uses a combination of electric fields and magnetic fields together with a sensitive volume of gas or liquid to perform a three-dimensional reconstruction of a particle trajectory or interaction.
The Cryogenic Dark Matter Search (CDMS) is a series of experiments designed to directly detect particle dark matter in the form of Weakly Interacting Massive Particles. Using an array of semiconductor detectors at millikelvin temperatures, CDMS has at times set the most sensitive limits on the interactions of WIMP dark matter with terrestrial materials. The first experiment, CDMS I, was run in a tunnel under the Stanford University campus. It was followed by CDMS II experiment in the Soudan Mine. The most recent experiment, SuperCDMS, was located deep underground in the Soudan Mine in northern Minnesota and collected data from 2011 through 2015. The series of experiments continues with SuperCDMS SNOLAB, an experiment located at the SNOLAB facility near Sudbury, Ontario in Canada that started construction in 2018 and is expected to start data taking in early 2020s.
The XENON dark matter research project, operated at the Italian Gran Sasso National Laboratory, is a deep underground detector facility featuring increasingly ambitious experiments aiming to detect hypothetical dark matter particles. The experiments aim to detect particles in the form of weakly interacting massive particles (WIMPs) by looking for rare nuclear recoil interactions in a liquid xenon target chamber. The current detector consists of a dual phase time projection chamber (TPC).
T2K is a particle physics experiment studying the oscillations of the accelerator neutrinos. The experiment is conducted in Japan by the international cooperation of about 500 physicists and engineers with over 60 research institutions from several countries from Europe, Asia and North America and it is a recognized CERN experiment (RE13). T2K collected data within its first phase of operation from 2010 till 2021. The second phase of data taking (T2K-II) is expected to start in 2023 and last until commencement of the successor of T2K – the Hyper-Kamiokande experiment in 2027.
The ArDM Experiment was a particle physics experiment based on a liquid argon detector, aiming at measuring signals from WIMPs, which may constitute the Dark Matter in the universe. Elastic scattering of WIMPs from argon nuclei is measurable by observing free electrons from ionization and photons from scintillation, which are produced by the recoiling nucleus interacting with neighbouring atoms. The ionization and scintillation signals can be measured with dedicated readout techniques, which constituted a fundamental part of the detector.
PICO is an experiment searching for direct evidence of dark matter using a bubble chamber of chlorofluorocarbon (Freon) as the active mass. It is located at SNOLAB in Canada.
DEAP is a direct dark matter search experiment which uses liquid argon as a target material. DEAP utilizes background discrimination based on the characteristic scintillation pulse-shape of argon. A first-generation detector (DEAP-1) with a 7 kg target mass was operated at Queen's University to test the performance of pulse-shape discrimination at low recoil energies in liquid argon. DEAP-1 was then moved to SNOLAB, 2 km below Earth's surface, in October 2007 and collected data into 2011.
The MicroMegas detector is a gaseous particle detector coming from the development of the wire chamber. Invented in 1992 by Georges Charpak and Ioannis Giomataris, the Micromegas detectors are mainly used in experimental physics, in particular in particle physics, nuclear physics and astrophysics for the detection of ionising particles.
The Large Underground Xenon experiment (LUX) aimed to directly detect weakly interacting massive particle (WIMP) dark matter interactions with ordinary matter on Earth. Despite the wealth of (gravitational) evidence supporting the existence of non-baryonic dark matter in the Universe, dark matter particles in our galaxy have never been directly detected in an experiment. LUX utilized a 370 kg liquid xenon detection mass in a time-projection chamber (TPC) to identify individual particle interactions, searching for faint dark matter interactions with unprecedented sensitivity.
The Directional Recoil Identification from Tracks (DRIFT) detector is a low pressure negative ion time projection chamber (NITPC) designed to detect weakly interacting massive particles (WIMPs) - a prime dark matter candidate.
Light dark matter, in astronomy and cosmology, are dark matter weakly interacting massive particles (WIMPS) candidates with masses less than 1 GeV. These particles are heavier than warm dark matter and hot dark matter, but are lighter than the traditional forms of cold dark matter, such as Massive Compact Halo Objects (MACHOs). The Lee-Weinberg bound limits the mass of the favored dark matter candidate, WIMPs, that interact via the weak interaction to GeV. This bound arises as follows. The lower the mass of WIMPs is, the lower the annihilation cross section, which is of the order , where m is the WIMP mass and M the mass of the Z-boson. This means that low mass WIMPs, which would be abundantly produced in the early universe, freeze out much earlier and thus at a higher temperature, than higher mass WIMPs. This leads to a higher relic WIMP density. If the mass is lower than GeV the WIMP relic density would overclose the universe.
The European Underground Rare Event Calorimeter Array (EURECA) is a planned dark matter search experiment using cryogenic detectors and an absorber mass of up to 1 tonne. The project will be built in the Modane Underground Laboratory and will bring together researchers working on the CRESST and EDELWEISS experiments.
EDELWEISS is a dark matter search experiment located at the Modane Underground Laboratory in France. The experiment uses cryogenic detectors, measuring both the phonon and ionization signals produced by particle interactions in germanium crystals. This technique allows nuclear recoils events to be distinguished from electron recoil events.
The DarkSide collaboration is an international affiliation of universities and labs seeking to directly detect dark matter in the form of weakly interacting massive particles (WIMPs). The collaboration is planning, building and operating a series of liquid argon time projection chambers (TPCs) that are employed at the Gran Sasso National Laboratory in Assergi, Italy. The detectors are filled with liquid argon from underground sources in order to exclude the radioactive isotope 39
Ar, which makes up one in every 1015 (quadrillion) atoms in atmospheric argon. The Darkside-10 (DS-10) prototype was tested in 2012, and the Darkside-50 (DS-50) experiment has been operating since 2013. Darkside-20k (DS-20k) with 20 tonnes of liquid argon is being planned as of 2019.
The ZEPLIN-III dark matter experiment attempted to detect galactic WIMPs using a 12 kg liquid xenon target. It operated from 2006 to 2011 at the Boulby Underground Laboratory in Loftus, North Yorkshire. This was the last in a series of xenon-based experiments in the ZEPLIN programme pursued originally by the UK Dark Matter Collaboration (UKDMC). The ZEPLIN-III project was led by Imperial College London and also included the Rutherford Appleton Laboratory and the University of Edinburgh in the UK, as well as LIP-Coimbra in Portugal and ITEP-Moscow in Russia. It ruled out cross-sections for elastic scattering of WIMPs off nucleons above 3.9 × 10−8 pb from the two science runs conducted at Boulby.
Elena Aprile is an Italian-American experimental particle physicist. She has been a professor of physics at Columbia University since 1986. She is the founder and spokesperson of the XENON Dark Matter Experiment. Aprile is well known for her work with noble liquid detectors and for her contributions to particle astrophysics in the search for dark matter.
The LUX-ZEPLIN (LZ) Experiment is a next-generation dark matter direct detection experiment hoping to observe weakly interacting massive particles (WIMP) scatters on nuclei. It was formed in 2012 by combining the LUX and ZEPLIN groups. It is currently a collaboration of 30 institutes in the US, UK, Portugal and South Korea. The experiment is located at the Sanford Underground Research Facility (SURF) in South Dakota, and is managed by the United States Department of Energy's (DOE) Lawrence Berkeley National Lab.
Jocelyn Monroe is an American experimental particle physicist who is a professor at Royal Holloway, University of London. Her research considers the development of novel detectors as part of the search for dark matter. In 2016 she was honoured with the Breakthrough Prize in Fundamental Physics for her work on the Sudbury Neutrino Observatory.
Direct detection of dark matter is the science of attempting to directly measure dark matter collisions in Earth-based experiments. Modern astrophysical measurements, such as from the Cosmic Microwave Background, strongly indicate that 85% of the matter content of the universe is unaccounted for. Although the existence of dark matter is widely believed, what form it takes or its precise properties has never been determined. There are three main avenues of research to detect dark matter: attempts to make dark matter in accelerators, indirect detection of dark matter annihilation, and direct detection of dark matter in terrestrial labs. The founding principle of direct dark matter detection is that since dark matter is known to exist in the local universe, as the Earth, Solar System, and the Milky Way Galaxy carve out a path through the universe they must intercept dark matter, regardless of what form it takes.
This article needs additional or more specific categories .(June 2023) |