Cryogenic particle detectors operate at very low temperature, typically only a few degrees above absolute zero. These sensors interact with an energetic elementary particle (such as a photon) and deliver a signal that can be related to the type of particle and the nature of the interaction. While many types of particle detectors might be operated with improved performance at cryogenic temperatures, this term generally refers to types that take advantage of special effects or properties occurring only at low temperature.
The most commonly cited reason for operating any sensor at low temperature is the reduction in thermal noise, which is proportional to the square root of the absolute temperature. However, at very low temperature, certain material properties become very sensitive to energy deposited by particles in their passage through the sensor, and the gain from these changes may be even more than that from reduction in thermal noise. Two such commonly used properties are heat capacity and electrical resistivity, particularly superconductivity; other designs are based on superconducting tunnel junctions, quasiparticle trapping, rotons in superfluids, magnetic bolometers, and other principles.
Originally, astronomy pushed the development of cryogenic detectors for optical and infrared radiation. [1] Later, particle physics and cosmology motivated cryogenic detector development for sensing known and predicted particles such as neutrinos, axions, and weakly interacting massive particles (WIMPs). [2] [3]
A calorimeter is a device that measures the amount of heat deposited in a sample of material. A calorimeter differs from a bolometer in that a calorimeter measures energy, while a bolometer measures power.
Below the Debye temperature of a crystalline dielectric material (such as silicon), the heat capacity decreases inversely as the cube of the absolute temperature. It becomes very small, so that the sample's increase in temperature for a given heat input may be relatively large. This makes it practical to make a calorimeter that has a very large temperature excursion for a small amount of heat input, such as that deposited by a passing particle. The temperature rise can be measured with a standard type of thermistor, as in a classical calorimeter. In general, small sample size and very sensitive thermistors are required to make a sensitive particle detector by this method.
In principle, several types of resistance thermometers can be used. The limit of sensitivity to energy deposition is determined by the magnitude of resistance fluctuations, which are in turn determined by thermal fluctuations. Since all resistors exhibit voltage fluctuations that are proportional to their temperature, an effect known as Johnson noise, a reduction of temperature is often the only way to achieve the required sensitivity.
A very sensitive calorimetric sensor known as a transition-edge sensor (TES) takes advantage of superconductivity. Most pure superconductors have a very sharp transition from normal resistivity to superconductivity at some low temperature. By operating on the superconducting phase transition, a very small change in temperature resulting from interaction with a particle results in a significant change in resistance.
The superconducting tunnel junction (STJ) consists of two pieces of superconducting material separated by a very thin (~nanometer) insulating layer. It is also known as a superconductor-insulator-superconductor tunnel junction (SIS) and is a type of a Josephson junction. Cooper pairs can tunnel across the insulating barrier, a phenomenon known as the Josephson effect. Quasiparticles can also tunnel across the barrier, although the quasiparticle current is suppressed for voltages less than twice the superconducting energy gap. A photon absorbed on one side of a STJ breaks Cooper pairs and creates quasiparticles. In the presence of an applied voltage across the junction, the quasiparticles tunnel across the junction, and the resulting tunneling current is proportional to the photon energy. The STJ can also be used as a heterodyne detector by exploiting the change in the nonlinear current–voltage characteristic that results from photon-assisted tunneling. STJs are the most sensitive heterodyne detectors available for the 100 GHz – 1 THz frequency range and are employed for astronomical observation at these frequencies.
The kinetic inductance detector (KID) is based on measuring the change in kinetic inductance caused by the absorption of photons in a thin strip of superconducting material. The change in inductance is typically measured as the change in the resonant frequency of a microwave resonator, and hence these detectors are also known as microwave kinetic inductance detectors (MKIDs).
The superconducting transition alone can be used to directly measure the heating caused by a passing particle. A type-I superconducting grain in a magnetic field exhibits perfect diamagnetism and excludes the field completely from its interior. If it is held slightly below the transition temperature, the superconductivity vanishes on heating by particle radiation, and the field suddenly penetrates the interior. This field change can be detected by a surrounding coil. The change is reversible when the grain cools again. In practice the grains must be very small and carefully made, and carefully coupled to the coil.
Paramagnetic rare-earth ions are being used as particle sensors by sensing the spin flips of the paramagnetic atoms induced by heat absorbed in a low-heat-capacity material. The ions are used as a magnetic thermometer.
Calorimeters assume the sample is in thermal equilibrium or nearly so. In crystalline materials at very low temperature this is not necessarily the case. A good deal more information can be found by measuring the elementary excitations of the crystal lattice, or phonons, caused by the interacting particle. This can be done by several methods including superconducting transition edge sensors.
The superconducting nanowire single-photon detector (SNSPD) is based on a superconducting wire cooled well below the superconducting transition temperature and biased with a dc current that is close to but less than the superconducting critical current. The SNSPD is typically made from ≈ 5 nm thick niobium nitride films which are patterned as narrow nanowires (with a typical width of 100 nm). Absorption of a photon breaks Cooper pairs and reduces the critical current below the bias current. A small non-superconducting section across the width of the nanowire is formed. [4] [5] This resistive non-superconducting section then leads to a detectable voltage pulse of a duration of about 1 nanosecond. The main advantages of this type of photon detector are its high speed (a maximal count rate of 2 GHz makes them the fastest available) and its low dark count rate. The main disadvantage is the lack of intrinsic energy resolution.
In superfluid 4He the elementary collective excitations are phonons and rotons. A particle striking an electron or nucleus in this superfluid can produce rotons, which may be detected bolometrically or by the evaporation of helium atoms when they reach a free surface. 4He is intrinsically very pure so the rotons travel ballistically and are stable, so that large volumes of fluid can be used.
In the B phase, below 0.001 K, superfluid 3He acts similarly to a superconductor. Pairs of atoms are bound as quasiparticles similar to Cooper pairs with a very small energy gap of the order of 100 nanoelectronvolts. This allows building a detector analogous to a superconducting tunnel detector. The advantage is that many (~109) pairs could be produced by a single interaction, but the difficulties are that it is difficult to measure the excess of normal 3He atoms produced and to prepare and maintain much superfluid at such low temperature.
In physics, cryogenics is the production and behaviour of materials at very low temperatures.
Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike an ordinary metallic conductor, whose resistance decreases gradually as its temperature is lowered even down to near absolute zero, a superconductor has a characteristic critical temperature below which the resistance drops abruptly to zero. An electric current through a loop of superconducting wire can persist indefinitely with no power source.
In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. Many intermediate states are known to exist, such as liquid crystal, and some states only exist under extreme conditions, such as Bose–Einstein condensates, neutron-degenerate matter, and quark–gluon plasma. For a complete list of all exotic states of matter, see the list of states of matter.
A SQUID is a very sensitive magnetometer used to measure extremely subtle magnetic fields, based on superconducting loops containing Josephson junctions.
Some of the technological applications of superconductivity include:
A bolometer is a device for measuring radiant heat by means of a material having a temperature-dependent electrical resistance. It was invented in 1878 by the American astronomer Samuel Pierpont Langley.
A thermographic camera is a device that creates an image using infrared (IR) radiation, similar to a normal camera that forms an image using visible light. Instead of the 400–700 nanometre (nm) range of the visible light camera, infrared cameras are sensitive to wavelengths from about 1,000 nm to about 14,000 nm (14 μm). The practice of capturing and analyzing the data they provide is called thermography.
In physics, quasiparticles and collective excitations are closely related emergent phenomena arising when a microscopically complicated system such as a solid behaves as if it contained different weakly interacting particles in vacuum.
Energy-dispersive X-ray spectroscopy, sometimes called energy dispersive X-ray analysis or energy dispersive X-ray microanalysis (EDXMA), is an analytical technique used for the elemental analysis or chemical characterization of a sample. It relies on an interaction of some source of X-ray excitation and a sample. Its characterization capabilities are due in large part to the fundamental principle that each element has a unique atomic structure allowing a unique set of peaks on its electromagnetic emission spectrum. The peak positions are predicted by the Moseley's law with accuracy much better than experimental resolution of a typical EDX instrument.
Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. There is a wide variety of photodetectors which may be classified by mechanism of detection, such as photoelectric or photochemical effects, or by various performance metrics, such as spectral response. Semiconductor-based photodetectors typically photo detector have a p–n junction that converts light photons into current. The absorbed photons make electron–hole pairs in the depletion region. Photodiodes and photo transistors are a few examples of photo detectors. Solar cells convert some of the light energy absorbed into electrical energy.
Superconducting radio frequency (SRF) science and technology involves the application of electrical superconductors to radio frequency devices. The ultra-low electrical resistivity of a superconducting material allows an RF resonator to obtain an extremely high quality factor, Q. For example, it is commonplace for a 1.3 GHz niobium SRF resonant cavity at 1.8 kelvins to obtain a quality factor of Q=5×1010. Such a very high Q resonator stores energy with very low loss and narrow bandwidth. These properties can be exploited for a variety of applications, including the construction of high-performance particle accelerator structures.
The superconducting tunnel junction (STJ) — also known as a superconductor–insulator–superconductor tunnel junction (SIS) — is an electronic device consisting of two superconductors separated by a very thin layer of insulating material. Current passes through the junction via the process of quantum tunneling. The STJ is a type of Josephson junction, though not all the properties of the STJ are described by the Josephson effect.
A transition-edge sensor (TES) is a type of cryogenic energy sensor or cryogenic particle detector that exploits the strongly temperature-dependent resistance of the superconducting phase transition.
A measuring instrument is a device to measure a physical quantity. In the physical sciences, quality assurance, and engineering, measurement is the activity of obtaining and comparing physical quantities of real-world objects and events. Established standard objects and events are used as units, and the process of measurement gives a number relating the item under study and the referenced unit of measurement. Measuring instruments, and formal test methods which define the instrument's use, are the means by which these relations of numbers are obtained. All measuring instruments are subject to varying degrees of instrument error and measurement uncertainty. These instruments may range from simple objects such as rulers and stopwatches to electron microscopes and particle accelerators. Virtual instrumentation is widely used in the development of modern measuring instruments.
Stefan Janos is a Slovak-Swiss university physicist and professor, founder of very low temperature physics in Slovakia.
Phonon noise, also known as thermal fluctuation noise, arises from the random exchange of energy between a thermal mass and its surrounding environment. This energy is quantized in the form of phonons. Each phonon has an energy of order , where is the Boltzmann constant and is the temperature. The random exchange of energy leads to fluctuations in temperature. This occurs even when the thermal mass and the environment are in thermal equilibrium, i.e. at the same time-average temperature. If a device has a temperature-dependent electrical resistance, then these fluctuations in temperature lead to fluctuations in resistance. Examples of devices where phonon noise is important include bolometers and calorimeters. The superconducting transition edge sensor (TES), which can be operated either as a bolometer or a calorimeter, is an example of a device for which phonon noise can significantly contribute to the total noise.
In electronics, electrothermal feedback is the interaction of the electric current and the temperature in a device with a temperature-dependent electrical resistance. This interaction arises from Joule heating.
Macroscopic quantum phenomena are processes showing quantum behavior at the macroscopic scale, rather than at the atomic scale where quantum effects are prevalent. The best-known examples of macroscopic quantum phenomena are superfluidity and superconductivity; other examples include the quantum Hall effect and topological order. Since 2000 there has been extensive experimental work on quantum gases, particularly Bose–Einstein condensates.
In the field of cryogenics, helium [He] is utilized for a variety of reasons. The combination of helium’s extremely low molecular weight and weak interatomic reactions yield interesting properties when helium is cooled below its critical temperature of 5.2 K to form a liquid. Even at absolute zero (0K), helium does not condense to form a solid under ambient pressure. In this state, the zero point vibrational energies of helium are comparable to very weak interatomic binding interactions, thus preventing lattice formation and giving helium its fluid characteristics. Within this liquid state, helium has two phases referred to as helium I and helium II. Helium I displays thermodynamic and hydrodynamic properties of classical fluids, along with quantum characteristics. However, below its lambda point of 2.17 K, helium transitions to He II and becomes a quantum superfluid with zero viscosity.