Superconducting nanowire single-photon detector

Last updated
False-color scanning electron micrograph of a superconducting nanowire single-photon detector (SNSPD). Image credit: NIST. NIST SEM Image of Superconducting Nanowire Single Photon Detector.jpg
False-color scanning electron micrograph of a superconducting nanowire single-photon detector (SNSPD). Image credit: NIST.
Superconducting nanowire single-photon detector in the DARPA Quantum Network laboratory at BBN, June 2005 Superconducting nanowire single-photon detector in the DARPA Quantum Network (BBN) - June 2005 - P1010035.jpg
Superconducting nanowire single-photon detector in the DARPA Quantum Network laboratory at BBN, June 2005

The superconducting nanowire single-photon detector (SNSPD or SSPD) is a type of optical and near-infrared single-photon detector based on a current-biased superconducting nanowire. [1] It was first developed by scientists at Moscow State Pedagogical University and at the University of Rochester in 2001. [2] [3] The first fully operational prototype was demonstrated in 2005 by the National Institute of Standards and Technology (Boulder), and BBN Technologies as part of the DARPA Quantum Network. [4] [5] [6] [7]

Contents

As of 2023, a superconducting nanowire single-photon detector is the fastest single-photon detector (SPD) for photon counting. [8] [9] [10] It is a key enabling technology for quantum optics and optical quantum technologies. SNSPDs are available with very high detection efficiency, very low dark count rate and very low timing jitter, compared to other types of single-photon detectors. SNSPDs are covered by International Electrotechnical Commission (IEC) international standards. [11] As of 2023, commercial SNSPD devices are available in multichannel systems in a price range of 100,000 euros.

It was recently discovered that superconducting wires as wide as 1.5 μm can detect single infra-red photons. [12] [13] [14] This is important because optical lithography rather than electron lithography can be used in their construction. This reduces the cost for applications that require large photodetector areas. One application is in dark matter detection experiments, where the target is a scintillating GaAs crystal. GaAs suitably doped with silicon and boron is a luminous cryogenic scintillator that has no apparent afterglow and is available commercially in the form of large, high-quality crystals. [15] [16] [17]

Principle of operation

The SNSPD consists of a thin (≈ 5 nm) and narrow (≈ 100 nm) superconducting nanowire. The length is typically hundreds of micrometers, and the nanowire is patterned in a compact meander geometry to create a square or circular pixel with high detection efficiency. The nanowire is cooled well below its superconducting critical temperature and biased with a DC current that is close to but less than the superconducting critical current of the nanowire. A photon incident on the nanowire breaks Cooper pairs and reduces the local critical current below that of the bias current. This results in the formation of a localized non-superconducting region, or hotspot, with finite electrical resistance. This resistance is typically larger than the 50 ohm input impedance of the readout amplifier, and hence most of the bias current is shunted to the amplifier. This produces a measurable voltage pulse that is approximately equal to the bias current multiplied by 50 ohms. With most of the bias current flowing through the amplifier, the non-superconducting region cools and returns to the superconducting state. The time for the current to return to the nanowire is typically set by the inductive time constant of the nanowire, equal to the kinetic inductance of the nanowire divided by the impedance of the readout circuit. [18] Proper self-resetting of the device requires that this inductive time constant be slower than the intrinsic cooling time of the nanowire hotspot. [19]

While the SNSPD does not match the intrinsic energy or photon-number resolution of the superconducting transition edge sensor, the SNSPD is significantly faster than conventional transition edge sensors and operates at higher temperatures. A degree of photon-number resolution can be achieved in SNSPD arrays, [20] through time-binning [21] or advanced readout schemes. [22] Most SNSPDs are made of sputtered niobium nitride (NbN), which offers a relatively high superconducting critical temperature (≈ 10  K) which enables SNSPD operation in the temperature range 1 K to 4 K (compatible with liquid helium or modern closed-cycle cryocoolers). The intrinsic thermal time constants of NbN are short, giving very fast cooling time after photon absorption (<100 picoseconds). [23]

The absorption in the superconducting nanowire can be boosted by a variety of strategies: integration with an optical cavity, [24] integration with a photonic waveguide [25] or addition of nanoantenna structures. [26] SNSPD cavity devices in NbN, NbTiN, WSi & MoSi have demonstrated fibre-coupled device detection efficiencies greater than 98% at 1550 nm wavelength [27] with count rates in the tens of MHz. [28] The detection efficiencies are optimized for a specific wavelength range in each detector. They vary widely, however, due to highly localized regions of the nanowires where the effective cross-sectional area for superconducting current is reduced. [29] SNSPD devices have also demonstrated exceptionally low jitter – the uncertainty in the photon arrival time – as low as 3 picoseconds at visible wavelengths. [30] [31] Timing jitter increases as photon energy drops and has been verified out to 3.5 micrometres wavelength. [32] Timing jitter is an extremely important property for time-correlated single-photon counting (TCSPC) [33] applications. Furthermore, SNSPDs have extremely low rates of dark counts, i.e. the occurrence of voltage pulses in the absence of a detected photon. [34] In addition, the deadtime (time interval following a detection event during which the detector is not sensitive) is on the order of a few nanoseconds, this short deadtime translates into very high saturation count rates and enables antibunching measurements with a single detector. [35]

For the detection of longer wavelength photons, however, the detection efficiency of standard SNSPDs decreases significantly. [36] Recent efforts to improve the detection efficiency at near-infrared and mid-infrared wavelengths include studies of narrower (20 nm and 30 nm wide) NbN nanowires [37] as well as extensive studies of alternative superconducting materials [38] with lower superconducting critical temperatures than NbN (tungsten silicide, [39] niobium silicide, [40] molybdenum silicide [41] and tantalum nitride [42] ). Single photon sensitivity up to 10 micrometer wavelength has recently been demonstrated in a tungsten silicide SNSPD. [43] Alternative thin film deposition techniques such as atomic layer deposition are of interest for extending the spectral range and scalability of SNSPDs to large areas. [44] High temperature superconductors have been investigated for SNSPDs [45] [46] with some encouraging recent reports. [47] [48] SNSPDs have been created from magnesium diboride with some single photon sensitivity in the visible and near infrared. [49] [50]

There is considerable interest and effort in scaling up SNSPDs to large multipixel arrays and cameras. [51] [52] A kilopixel SNSPD array has recently been reported. [53] A key challenge is readout, [54] which can be addressed via multiplexing [55] [56] or digital readout using superconducting single flux quantum logic. [57]

Applications

Many of the initial application demonstrations of SNSPDs have been in the area of quantum information, [58] such as quantum key distribution [59] and optical quantum computing. [60] [61] Other current and emerging applications include imaging of infrared photoemission for defect analysis in CMOS circuitry, [62] single photon emitter characterization, [63] LIDAR, [64] [65] [66] on-chip quantum optics, [67] [68] optical neuromorphic computing, [69] [70] fibre optic temperature sensing, [71] optical time domain reflectometry, [72] readout for ion trap qubits, [73] quantum plasmonics, [74] [75] single electron detection, [76] single α and β particle detection, [77] singlet oxygen luminescence detection, [78] deep space optical communication, [79] [80] dark matter searches [81] and exoplanet detection. [82] A number of companies worldwide are successfully commercializing complete single-photon detection systems based on superconducting nanowires, including Single Quantum, Photon Spot, Scontel, Quantum Opus, ID Quantique, PhoTec and Pixel Photonics. Wider adoption of SNSPD technology is closely linked to advances in cryocoolers for 4 K and below, and SNSPDs have recently been demonstrated in miniaturized systems. [83] [84]

Related Research Articles

Photoconductivity is an optical and electrical phenomenon in which a material becomes more electrically conductive due to the absorption of electromagnetic radiation such as visible light, ultraviolet light, infrared light, or gamma radiation.

<span class="mw-page-title-main">Photodetector</span> Sensors of light or other electromagnetic energy

Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. There are a wide variety of photodetectors which may be classified by mechanism of detection, such as photoelectric or photochemical effects, or by various performance metrics, such as spectral response. Semiconductor-based photodetectors typically use a p–n junction that converts photons into charge. The absorbed photons make electron–hole pairs in the depletion region. Photodiodes and photo transistors are a few examples of photo detectors. Solar cells convert some of the light energy absorbed into electrical energy.

Narrow-gap semiconductors are semiconducting materials with a magnitude of bandgap that is smaller than 0.7 eV, which corresponds to an infrared absorption cut-off wavelength over 2.5 micron. A more extended definition includes all semiconductors with bandgaps smaller than silicon. Modern terahertz, infrared, and thermographic technologies are all based on this class of semiconductors.

Indium gallium arsenide (InGaAs) is a ternary alloy of indium arsenide (InAs) and gallium arsenide (GaAs). Indium and gallium are group III elements of the periodic table while arsenic is a group V element. Alloys made of these chemical groups are referred to as "III-V" compounds. InGaAs has properties intermediate between those of GaAs and InAs. InGaAs is a room-temperature semiconductor with applications in electronics and photonics.

Quantum-cascade lasers (QCLs) are semiconductor lasers that emit in the mid- to far-infrared portion of the electromagnetic spectrum and were first demonstrated by Jérôme Faist, Federico Capasso, Deborah Sivco, Carlo Sirtori, Albert Hutchinson, and Alfred Cho at Bell Laboratories in 1994.

Cryogenic particle detectors operate at very low temperature, typically only a few degrees above absolute zero. These sensors interact with an energetic elementary particle and deliver a signal that can be related to the type of particle and the nature of the interaction. While many types of particle detectors might be operated with improved performance at cryogenic temperatures, this term generally refers to types that take advantage of special effects or properties occurring only at low temperature.

<span class="mw-page-title-main">Niobium nitride</span> Chemical compound

Niobium nitride is a compound of niobium and nitrogen (nitride) with the chemical formula NbN. At low temperatures NbN becomes a superconductor, and is used in detectors for infrared light.

A Visible Light Photon Counter (VLPC) is a photon counting photodetector based on impurity-band conduction in arsenic-doped silicon. They have high quantum efficiency and are able to detect single photons in the visible range of the electromagnetic spectrum. The ability to count the exact number of photons detected is extremely important for quantum key distribution.

Ghost imaging is a technique that produces an image of an object by combining information from two light detectors: a conventional, multi-pixel detector that does not view the object, and a single-pixel (bucket) detector that does view the object. Two techniques have been demonstrated. A quantum method uses a source of pairs of entangled photons, each pair shared between the two detectors, while a classical method uses a pair of correlated coherent beams without exploiting entanglement. Both approaches may be understood within the framework of a single theory.

A nanolaser is a laser that has nanoscale dimensions and it refers to a micro-/nano- device which can emit light with light or electric excitation of nanowires or other nanomaterials that serve as resonators. A standard feature of nanolasers includes their light confinement on a scale approaching or suppressing the diffraction limit of light. These tiny lasers can be modulated quickly and, combined with their small footprint, this makes them ideal candidates for on-chip optical computing.

The superconducting tunnel junction (STJ) – also known as a superconductor–insulator–superconductor tunnel junction (SIS) – is an electronic device consisting of two superconductors separated by a very thin layer of insulating material. Current passes through the junction via the process of quantum tunneling. The STJ is a type of Josephson junction, though not all the properties of the STJ are described by the Josephson effect.

A single-photon source is a light source that emits light as single particles or photons. Single-photon sources are distinct from coherent light sources (lasers) and thermal light sources such as incandescent light bulbs. The Heisenberg uncertainty principle dictates that a state with an exact number of photons of a single frequency cannot be created. However, Fock states can be studied for a system where the electric field amplitude is distributed over a narrow bandwidth. In this context, a single-photon source gives rise to an effectively one-photon number state.

<span class="mw-page-title-main">Kinetic inductance detector</span>

The kinetic inductance detector (KID) — also known as a microwave kinetic inductance detector (MKID) — is a type of superconducting photon detector capable of counting single photons whilst simultaneously measuring their energy and arrival time to high precision. They were first developed by scientists at the California Institute of Technology and the Jet Propulsion Laboratory in 2003. These devices operate at cryogenic temperatures, typically below 1 kelvin. They are being developed for high-sensitivity astronomical detection for frequencies ranging from the far-infrared to X-rays.

<span class="mw-page-title-main">Photon counting</span> Counting photons using a single-photon detector

Photon counting is a technique in which individual photons are counted using a single-photon detector (SPD). A single-photon detector emits a pulse of signal for each detected photon. The counting efficiency is determined by the quantum efficiency and the system's electronic losses.

Richard Magee Osgood Jr. was an American applied and pure physicist. He was Higgins Professor of Electrical Engineering and Applied Physics at Columbia University.

<span class="mw-page-title-main">Camelback potential</span> Potential energy curve

A camelback potential is potential energy curve that looks like a normal distribution with a distinct dip where the peak would be, so named because it resembles the humps on a camel's back. The term was applied to a configuration of a superconducting quantum interference device in 2009, and to an arrangement of magnets in 2014.

A quantum dot single-photon source is based on a single quantum dot placed in an optical cavity. It is an on-demand single-photon source. A laser pulse can excite a pair of carriers known as an exciton in the quantum dot. The decay of a single exciton due to spontaneous emission leads to the emission of a single photon. Due to interactions between excitons, the emission when the quantum dot contains a single exciton is energetically distinct from that when the quantum dot contains more than one exciton. Therefore, a single exciton can be deterministically created by a laser pulse and the quantum dot becomes a nonclassical light source that emits photons one by one and thus shows photon antibunching. The emission of single photons can be proven by measuring the second order intensity correlation function. The spontaneous emission rate of the emitted photons can be enhanced by integrating the quantum dot in an optical cavity. Additionally, the cavity leads to emission in a well-defined optical mode increasing the efficiency of the photon source.

<span class="mw-page-title-main">DARPA Quantum Network</span> Quantum key distribution network

The DARPA Quantum Network (2002–2007) was the world's first quantum key distribution (QKD) network, operating 10 optical nodes across Boston and Cambridge, Massachusetts. It became fully operational on October 23, 2003 in BBN's laboratories, and in June 2004 was fielded through dark fiber under the streets of Cambridge and Boston, where it ran continuously for over 3 years. The project also created and fielded the world's first superconducting nanowire single-photon detector. It was sponsored by DARPA as part of the QuIST program, and built and operated by BBN Technologies in close collaboration with colleagues at Harvard University and the Boston University Photonics Center.

<span class="mw-page-title-main">Adriana Lita</span> Romanian materials scientist

Adriana Eleni Lita is a Romanian materials scientist who is a member of the faint photonics group at National Institute of Standards and Technology. She works on fabrication and development of single-photon detectors such as transition-edge sensors and superconducting nanowire single-photon detector devices.

<span class="mw-page-title-main">Quantum Cascade Detector</span> Photodetector sensitive to infrared radiation

A Quantum Cascade Detector (QCD) is a photodetector sensitive to infrared radiation. The absorption of incident light is mediated by intersubband transitions in a semiconductor multiple-quantum-well structure. The term cascade refers to the characteristic path of the electrons inside the material bandstructure, induced by absorption of incident light.

References

  1. Natarajan, Chandra M.; Tanner, Michael G.; Hadfield, Robert H. (2012). "Superconducting nanowire single-photon detectors: Physics and applications". Superconductor Science and Technology. 25 (6): 063001. arXiv: 1204.5560 . Bibcode:2012SuScT..25f3001N. doi:10.1088/0953-2048/25/6/063001. S2CID   4893642.
  2. Semenov, Alex D.; Gol'Tsman, Gregory N.; Korneev, Alexander A. (2001). "Quantum detection by current carrying superconducting film". Physica C: Superconductivity. 351 (4): 349–356. Bibcode:2001PhyC..351..349S. doi:10.1016/S0921-4534(00)01637-3.
  3. Gol'Tsman, G. N.; Okunev, O.; Chulkova, G.; Lipatov, A.; Semenov, A.; Smirnov, K.; Voronov, B.; Dzardanov, A.; Williams, C.; Sobolewski, Roman (2001). "Picosecond superconducting single-photon optical detector". Applied Physics Letters. 79 (6): 705–707. Bibcode:2001ApPhL..79..705G. doi:10.1063/1.1388868.
  4. Chip Elliott, "The DARPA quantum network", Quantum physics of nature. Theory, experiment and interpretation. in collaboration with 6th European QIPC workshop, Austria, 2005.
  5. Martin A. Jaspan, Jonathan L. Habif, Robert H. Hadfield, Sae Woo Nam, "Heralding of telecommunication photon pairs with a superconducting single photon detector", Applied Physics Letters 89(3):031112-031112-3, July 2006.
  6. BBN Technologies, "DARPA Quantum Network Testbed", Final Technical Report, 2007.
  7. Hadfield, Robert H.; Habif, Jonathan L.; Schlafer, John; Schwall, Robert E.; Nam, Sae Woo (2006-12-11). "Quantum key distribution at 1550nm with twin superconducting single-photon detectors". Applied Physics Letters. 89 (24): 241129. Bibcode:2006ApPhL..89x1129H. doi:10.1063/1.2405870. ISSN   0003-6951.
  8. Francesco Marsili. "High Efficiency in the Fastest Single-Photon Detector System". 2013.
  9. Hadfield, Robert H. (December 2009). "Single-photon detectors for optical quantum information applications". Nature Photonics. 3 (12): 696–705. Bibcode:2009NaPho...3..696H. doi:10.1038/nphoton.2009.230. ISSN   1749-4885.
  10. Esmaeil Zadeh, Iman; Chang, J.; Los, Johannes W. N.; Gyger, Samuel; Elshaari, Ali W.; Steinhauer, Stephan; Dorenbos, Sander N.; Zwiller, Val (2021-05-10). "Superconducting nanowire single-photon detectors: A perspective on evolution, state-of-the-art, future developments, and applications". Applied Physics Letters. 118 (19): 190502. Bibcode:2021ApPhL.118s0502E. doi: 10.1063/5.0045990 . ISSN   0003-6951. S2CID   236573004.
  11. "IEC 61788-22-3:2022 | IEC Webstore". webstore.iec.ch. Retrieved 2023-04-29.
  12. Luskin et al. (2023). “Large active-area superconducting microwire detector array with single-photon sensitivity in the near-infrared”, Appl. Phys. Lett. 122, 243506. https://doi.org/10.1063/5.0150282
  13. G.-Z. Xu et al. (2023). “Millimeter-scale active area superconducting microstrip single-photon detector fabricated by ultraviolet photolithography,” Optics Express, vol. 31, pp. 16348-16360.
  14. Yabuno M.; China F.; Terai H.; Miki S. (2023). “Superconducting wide strip photon detector with high critical current bank structure”, Optica Quantum, 1: 26-34
  15. Derenzo, S.; Bourret, E.; Hanrahan, S.; Bizarri, G. (2018). "Cryogenic scintillation properties of n-type GaAs for the direct detection of MeV/c2 dark matter". Journal of Applied Physics. 123 (11): 114501. arXiv:1802.09171. Bibcode:2018JAP...123k4501D. doi:10.1063/1.5018343. S2CID 56118568
  16. Vasiukov, S.; Chiossi, F.; Braggio, C.; Carugno, G.; Moretti, F.; Bourret, E.; Derenzo, S. (2019). "GaAs as a Bright Cryogenic Scintillator for the Detection of Low-Energy Electron Recoils from MeV/c2 Dark Matter". IEEE Transactions on Nuclear Science. 66 (11): 2333–2337. Bibcode:2019ITNS...66.2333V. doi:10.1109/TNS.2019.2946725. S2CID 208208697
  17. Derenzo, S.; Bourret, E.; Frank-Rotsch, C.; Hanrahan, S.; Garcia-Sciveres, M. (2021). "How silicon and boron dopants govern the cryogenic scintillation properties of n-type GaAs". Nuclear Instruments and Methods in Physics Research Section A. 989: 164957. arXiv:2012.07550. Bibcode:2021NIMPA.98964957D. doi:10.1016/j.nima.2020.164957. S2CID 229158562
  18. Kerman, Andrew J.; Dauler, Eric A.; Keicher, William E.; Yang, Joel K. W.; Berggren, Karl K.; Gol'Tsman, G.; Voronov, B. (2006). "Kinetic-inductance-limited reset time of superconducting nanowire photon counters". Applied Physics Letters. 88 (11): 111116. arXiv: physics/0510238 . Bibcode:2006ApPhL..88k1116K. doi:10.1063/1.2183810. S2CID   53373647.
  19. Annunziata, Anthony J.; Quaranta, Orlando; Santavicca, Daniel F.; Casaburi, Alessandro; Frunzio, Luigi; Ejrnaes, Mikkel; Rooks, Michael J.; Cristiano, Roberto; Pagano, Sergio; Frydman, Aviad; Prober, Daniel E. (2010). "Reset dynamics and latching in niobium superconducting nanowire single-photon detectors". Journal of Applied Physics. 108 (8): 084507–084507–7. arXiv: 1008.0895 . Bibcode:2010JAP...108h4507A. doi:10.1063/1.3498809. S2CID   13941277.
  20. Divochiy, Aleksander; Marsili, Francesco; Bitauld, David; Gaggero, Alessandro; Leoni, Roberto; Mattioli, Francesco; Korneev, Alexander; Seleznev, Vitaliy; Kaurova, Nataliya; Minaeva, Olga; Gol'tsman, Gregory (May 2008). "Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths". Nature Photonics. 2 (5): 302–306. doi:10.1038/nphoton.2008.51. ISSN   1749-4893.
  21. Natarajan, Chandra M.; Zhang, Lijian; Coldenstrodt-Ronge, Hendrik; Donati, Gaia; Dorenbos, Sander N.; Zwiller, Val; Walmsley, Ian A.; Hadfield, Robert H. (2013-01-14). "Quantum detector tomography of a time-multiplexed superconducting nanowire single-photon detector at telecom wavelengths". Optics Express. 21 (1): 893–902. Bibcode:2013OExpr..21..893N. doi: 10.1364/OE.21.000893 . ISSN   1094-4087. PMID   23388983.
  22. Zhu, Di; Colangelo, Marco; Chen, Changchen; Korzh, Boris A.; Wong, Franco N. C.; Shaw, Matthew D.; Berggren, Karl K. (2020-05-13). "Resolving Photon Numbers Using a Superconducting Nanowire with Impedance-Matching Taper". Nano Letters. 20 (5): 3858–3863. arXiv: 1911.09485 . Bibcode:2020NanoL..20.3858Z. doi:10.1021/acs.nanolett.0c00985. ISSN   1530-6984. PMID   32271591. S2CID   215726323.
  23. Gousev, Yu.P.; Semenov, A.D.; Gol'Tsman, G.N.; Sergeev, A.V.; Gershenzon, E.M. (1994). "Electron-phonon interaction in disordered NBN films". Physica B: Condensed Matter. 194–196: 1355–1356. Bibcode:1994PhyB..194.1355G. doi:10.1016/0921-4526(94)91007-3.
  24. Rosfjord, Kristine M.; Yang, Joel K. W.; Dauler, Eric A.; Kerman, Andrew J.; Anant, Vikas; Voronov, Boris M.; Gol'tsman, Gregory N.; Berggren, Karl K. (2006-01-23). "Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating". Optics Express. 14 (2): 527–534. Bibcode:2006OExpr..14..527R. doi: 10.1364/OPEX.14.000527 . ISSN   1094-4087. PMID   19503367.
  25. Pernice, W. H. P.; Schuck, C.; Minaeva, O.; Li, M.; Goltsman, G. N.; Sergienko, A. V.; Tang, H. X. (2012-12-27). "High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits". Nature Communications. 3 (1): 1325. arXiv: 1108.5299 . Bibcode:2012NatCo...3.1325P. doi:10.1038/ncomms2307. ISSN   2041-1723. PMC   3535416 . PMID   23271658.
  26. Heath, Robert M.; Tanner, Michael G.; Drysdale, Timothy D.; Miki, Shigehito; Giannini, Vincenzo; Maier, Stefan A.; Hadfield, Robert H. (2015-02-11). "Nanoantenna Enhancement for Telecom-Wavelength Superconducting Single Photon Detectors". Nano Letters. 15 (2): 819–822. arXiv: 1501.03333 . Bibcode:2015NanoL..15..819H. doi:10.1021/nl503055a. ISSN   1530-6984. PMID   25575021. S2CID   16305859.
  27. Reddy, Dileep V.; Nerem, Robert R.; Nam, Sae Woo; Mirin, Richard P.; Verma, Varun B. (2020-12-20). "Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm". Optica. 7 (12): 1649–1653. Bibcode:2020Optic...7.1649R. doi: 10.1364/OPTICA.400751 . ISSN   2334-2536.
  28. Peng Hu; et al. (2020). "Detecting single infrared photons toward optimal system detection efficiency". Optics Express. 28 (24): 36884–36891. arXiv: 2009.14690 . Bibcode:2020OExpr..2836884H. doi: 10.1364/OE.410025 . PMID   33379772.
  29. Andrew J Kerman; Eric A Dauler; Joel KW Yang; Kristine M Rosfjord; Vikas Anant; Karl K Berggren; Gregory N Gol'tsman; Boris M Voronov (2007). "Constriction-limited detection efficiency of superconducting nanowire single-photon detectors". Applied Physics Letters. 90 (10): 101110. arXiv: physics/0611260 . Bibcode:2007ApPhL..90j1110K. doi:10.1063/1.2696926. S2CID   118985342.
  30. Korzh, Boris; Zhao, Qing-Yuan; Allmaras, Jason P.; Frasca, Simone; Autry, Travis M.; Bersin, Eric A.; Beyer, Andrew D.; Briggs, Ryan M.; Bumble, Bruce; Colangelo, Marco; Crouch, Garrison M. (April 2020). "Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector". Nature Photonics. 14 (4): 250–255. arXiv: 1804.06839 . Bibcode:2020NaPho..14..250K. doi:10.1038/s41566-020-0589-x. ISSN   1749-4893. S2CID   216455902.
  31. Hadfield, Robert H. (April 2020). "Superfast photon counting". Nature Photonics. 14 (4): 201–202. Bibcode:2020NaPho..14..201H. doi:10.1038/s41566-020-0614-0. ISSN   1749-4893. S2CID   216178290.
  32. Taylor, Gregor G.; MacKenzie, Ewan N.; Korzh, Boris; Morozov, Dmitry V.; Bumble, Bruce; Beyer, Andrew D.; Allmaras, Jason P.; Shaw, Matthew D.; Hadfield, Robert H. (2022-11-21). "Mid-infrared timing jitter of superconducting nanowire single-photon detectors". Applied Physics Letters. 121 (21): 214001. doi: 10.1063/5.0128129 . ISSN   0003-6951.
  33. Becker, Wolfgang (2005). Advanced Time-Correlated Single Photon Counting Techniques. Springer Series in Chemical Physics. Vol. 81. Bibcode:2005atcs.book.....C. doi:10.1007/3-540-28882-1. ISBN   978-3-540-26047-9. ISSN   0172-6218.
  34. Kitaygorsky, J.; Zhang, J.; Verevkin, A.; Sergeev, A.; Korneev, A.; Matvienko, V.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'Tsman, G.; Sobolewski, R. (2005). "Origin of Dark Counts in Nanostructured NBN Single-Photon Detectors". IEEE Transactions on Applied Superconductivity. 15 (2): 545–548. Bibcode:2005ITAS...15..545K. doi:10.1109/TASC.2005.849914. S2CID   10285736.
  35. Steudle, Gesine A.; Schietinger, Stefan; Höckel, David; Dorenbos, Sander N.; Zadeh, Iman E.; Zwiller, Valery; Benson, Oliver (2012). "Measuring the quantum nature of light with a single source and a single detector". Physical Review A. 86 (5): 053814. arXiv: 1107.1353 . Bibcode:2012PhRvA..86e3814S. doi:10.1103/PhysRevA.86.053814. S2CID   119287808.
  36. Korneev, A.; Matvienko, V.; Minaeva, O.; Milostnaya, I.; Rubtsova, I.; Chulkova, G.; Smirnov, K.; Voronov, V.; Gol'Tsman, G.; Slysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, R. (2005). "Quantum Efficiency and Noise Equivalent Power of Nanostructured, NBN, Single-Photon Detectors in the Wavelength Range from Visible to Infrared". IEEE Transactions on Applied Superconductivity. 15 (2): 571–574. Bibcode:2005ITAS...15..571K. doi:10.1109/TASC.2005.849923. S2CID   20606230.
  37. Marsili, Francesco; Najafi, Faraz; Dauler, Eric; Bellei, Francesco; Hu, Xiaolong; Csete, Maria; Molnar, Richard J.; Berggren, Karl K. (2011). "Single-Photon Detectors Based on Ultranarrow Superconducting Nanowires". Nano Letters. 11 (5): 2048–2053. arXiv: 1012.4149 . Bibcode:2011NanoL..11.2048M. doi:10.1021/nl2005143. PMID   21456546. S2CID   7796191.
  38. Holzman, Itamar; Ivry, Yachin (2019). "Superconducting Nanowires for Single-Photon Detection: Progress, Challenges, and Opportunities". Advanced Quantum Technologies. 2 (3–4): 1800058. arXiv: 1807.09060 . doi:10.1002/qute.201800058. ISSN   2511-9044. S2CID   119427730.
  39. Baek, Burm; Lita, Adriana E.; Verma, Varun; Nam, Sae Woo (2011). "Superconducting a-WxSi1−x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm". Applied Physics Letters. 98 (25): 251105. Bibcode:2011ApPhL..98y1105B. doi:10.1063/1.3600793.
  40. Dorenbos, S. N.; Forn-Díaz, P.; Fuse, T.; Verbruggen, A. H.; Zijlstra, T.; Klapwijk, T. M.; Zwiller, V. (2011). "Low gap superconducting single photon detectors for infrared sensitivity". Applied Physics Letters. 98 (25): 251102. Bibcode:2011ApPhL..98y1102D. doi:10.1063/1.3599712.
  41. Li, Jian; Kirkwood, Robert A.; Baker, Luke J.; Bosworth, David; Erotokritou, Kleanthis; Banerjee, Archan; Heath, Robert M.; Natarajan, Chandra M.; Barber, Zoe H. (2016-06-27). "Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires". Optics Express. 24 (13): 13931–13938. Bibcode:2016OExpr..2413931L. doi: 10.1364/OE.24.013931 . hdl: 1983/502e0a88-986b-4e79-8905-2bbd3bd75afd . ISSN   1094-4087. PMID   27410555.
  42. Engel, A.; Aeschbacher, A.; Inderbitzin, K.; Schilling, A.; Il'in, K.; Hofherr, M.; Siegel, M.; Semenov, A.; Hübers, H.-W. (2012-02-06). "Tantalum nitride superconducting single-photon detectors with low cut-off energy". Applied Physics Letters. 100 (6): 062601. arXiv: 1110.4576 . Bibcode:2012ApPhL.100f2601E. doi:10.1063/1.3684243. ISSN   0003-6951. S2CID   118674991.
  43. Verma, V. B.; Korzh, B.; Walter, A. B.; Lita, A. E.; Briggs, R. M.; Colangelo, M.; Zhai, Y.; Wollman, E. E.; Beyer, A. D.; Allmaras, J. P.; Vora, H. (2021-05-01). "Single-photon detection in the mid-infrared up to 10 μm wavelength using tungsten silicide superconducting nanowire detectors". APL Photonics. 6 (5): 056101. arXiv: 2012.09979 . Bibcode:2021APLP....6e6101V. doi:10.1063/5.0048049. PMC   10448953 . PMID   37621960. S2CID   229331770.
  44. Taylor, Gregor G.; Morozov, Dmitry V.; Lennon, Ciaran T.; Barry, Peter S.; Sheagren, Calder; Hadfield, Robert H. (2021-05-10). "Infrared single-photon sensitivity in atomic layer deposited superconducting nanowires". Applied Physics Letters. 118 (19): 191106. Bibcode:2021ApPhL.118s1106T. doi: 10.1063/5.0048799 . ISSN   0003-6951.
  45. Arpaia, R.; Ejrnaes, M.; Parlato, L.; Tafuri, F.; Cristiano, R.; Golubev, D.; Sobolewski, Roman; Bauch, T.; Lombardi, F.; Pepe, G.P. (2015-02-15). "High-temperature superconducting nanowires for photon detection". Physica C: Superconductivity and Its Applications. 509: 16–21. doi:10.1016/j.physc.2014.09.017. hdl: 10278/5058324 . ISSN   0921-4534.
  46. Amari, P.; Kozlov, S.; Recoba-Pawlowski, E.; Velluire-Pellat, Z.; Jouan, A.; Couedo, F.; Ulysse, C.; Briatico, J.; Roditchev, D.; Bergeal, N.; Lesueur, J.; Feuillet-Palma, C. (2023-10-10). "Scalable nanofabrication of high-quality YBCO nanowires for single-photon detectors". Physical Review Applied. 2O: 044025. doi:10.1103/PhysRevApplied.20.044025. S2CID   263840977.
  47. Merino, Rafael Luque; Seifert, Paul; Retamal, José Durán; Mech, Roop K; Taniguchi, Takashi; Watanabe, Kenji; Kadowaki, Kazuo; Hadfield, Robert H; Efetov, Dmitri K (2023-04-01). "Two-dimensional cuprate nanodetector with single telecom photon sensitivity at T = 20 K". 2D Materials. 10 (2): 021001. arXiv: 2208.05044 . Bibcode:2023TDM....10b1001M. doi: 10.1088/2053-1583/acb4a8 . hdl: 10261/337040 . ISSN   2053-1583. S2CID   256166805.
  48. Charaev, I.; Bandurin, D. A.; Bollinger, A. T.; Phinney, I. Y.; Drozdov, I.; Colangelo, M.; Butters, B. A.; Taniguchi, T.; Watanabe, K.; He, X.; Božović, I.; Jarillo-Herrero, P.; Berggren, K. K. (2023). "Single-photon detection using high-temperature superconductors". Nature Nanotechnology. 18 (4): 343–349. arXiv: 2208.05674 . Bibcode:2023NatNa..18..343C. doi:10.1038/s41565-023-01325-2. PMID   36941357. S2CID   251493161.
  49. Shibata, H.; Takesue, H.; Honjo, T.; Akazaki, T.; Tokura, Y. (2010-11-22). "Single-photon detection using magnesium diboride superconducting nanowires". Applied Physics Letters. 97 (21): 212504. Bibcode:2010ApPhL..97u2504S. doi:10.1063/1.3518723. ISSN   0003-6951.
  50. Cherednichenko, Sergey; Acharya, Narendra; Novoselov, Evgenii; Drakinskiy, Vladimir (2021). "Low kinetic inductance superconducting MgB2 nanowires with a 130 ps relaxation time for single-photon detection applications". Superconductor Science and Technology. 34 (4): 044001. arXiv: 1911.01480 . Bibcode:2021SuScT..34d4001C. doi:10.1088/1361-6668/abdeda. ISSN   0953-2048. S2CID   234305489.
  51. Steinhauer, Stephan; Gyger, Samuel; Zwiller, Val (2021-03-08). "Progress on large-scale superconducting nanowire single-photon detectors". Applied Physics Letters. 118 (10): 100501. Bibcode:2021ApPhL.118j0501S. doi: 10.1063/5.0044057 . ISSN   0003-6951.
  52. Doerner, S.; Kuzmin, A.; Wuensch, S.; Charaev, I.; Boes, F.; Zwick, T.; Siegel, M. (2017-07-17). "Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array". Applied Physics Letters. 111 (3): 032603. arXiv: 1705.05345 . Bibcode:2017ApPhL.111c2603D. doi:10.1063/1.4993779. ISSN   0003-6951. S2CID   119328620.
  53. Wollman, Emma E.; Verma, Varun B.; Verma, Varun B.; Lita, Adriana E.; Farr, William H.; Shaw, Matthew D.; Mirin, Richard P.; Nam, Sae Woo (2019-11-25). "Kilopixel array of superconducting nanowire single-photon detectors". Optics Express. 27 (24): 35279–35289. arXiv: 1908.10520 . Bibcode:2019OExpr..2735279W. doi:10.1364/OE.27.035279. ISSN   1094-4087. PMID   31878700. S2CID   201651262.
  54. McCaughan, Adam N (2018-04-01). "Readout architectures for superconducting nanowire single photon detectors". Superconductor Science and Technology. 31 (4): 040501. Bibcode:2018SuScT..31d0501M. doi:10.1088/1361-6668/aaa1b3. ISSN   0953-2048. PMC   6459399 . PMID   30983702.
  55. Allman, M. S.; Verma, V. B.; Stevens, M.; Gerrits, T.; Horansky, R. D.; Lita, A. E.; Marsili, F.; Beyer, A.; Shaw, M. D.; Kumor, D.; Mirin, R. (2015-05-11). "A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout". Applied Physics Letters. 106 (19): 192601. arXiv: 1504.02812 . Bibcode:2015ApPhL.106s2601A. doi:10.1063/1.4921318. ISSN   0003-6951. S2CID   119263216.
  56. Doerner, S.; Kuzmin, A.; Wuensch, S.; Charaev, I.; Boes, F.; Zwick, T.; Siegel, M. (2017-07-17). "Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array". Applied Physics Letters. 111 (3): 032603. arXiv: 1705.05345 . Bibcode:2017ApPhL.111c2603D. doi:10.1063/1.4993779. ISSN   0003-6951. S2CID   119328620.
  57. Miyajima, Shigeyuki; Yabuno, Masahiro; Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka (2018-10-29). "High-time-resolved 64-channel single-flux quantum-based address encoder integrated with a multi-pixel superconducting nanowire single-photon detector". Optics Express. 26 (22): 29045–29054. Bibcode:2018OExpr..2629045M. doi: 10.1364/OE.26.029045 . ISSN   1094-4087. PMID   30470072.
  58. Hadfield, Robert H.; Johansson, Göran, eds. (2016). Superconducting Devices in Quantum Optics. Bibcode:2016sdqo.book.....H. doi:10.1007/978-3-319-24091-6. ISBN   978-3-319-24089-3. ISSN   2364-9054.{{cite book}}: |journal= ignored (help)
  59. H. Takesue et al., "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nature Photonics1, 343 (2007), doi : 10.1038/nphoton.2007.75, arXiv:0706.0397
  60. Zhong, Han-Sen; Wang, Hui; Deng, Yu-Hao; Chen, Ming-Cheng; Peng, Li-Chao; Luo, Yi-Han; Qin, Jian; Wu, Dian; Ding, Xing; Hu, Yi; Hu, Peng (2020-12-18). "Quantum computational advantage using photons". Science. 370 (6523): 1460–1463. arXiv: 2012.01625 . Bibcode:2020Sci...370.1460Z. doi:10.1126/science.abe8770. ISSN   0036-8075. PMID   33273064. S2CID   227254333.
  61. Silicon Photonic Quantum Computing - PsiQuantum at 2021 APS March Meeting, 13 April 2021, retrieved 2021-05-16
  62. Mc Manus, M.K.; Kash, J.A.; Steen, S.E.; Polonsky, S.; Tsang, J.C.; Knebel, D.R.; Huott, W. (2000). "PICA: Backside failure analysis of CMOS circuits using Picosecond Imaging Circuit Analysis". Microelectronics Reliability. 40 (8–10): 1353–1358. Bibcode:2000MiRe...40.1353M. doi:10.1016/S0026-2714(00)00137-2.
  63. Hadfield, Robert H.; Stevens, Martin J.; Gruber, Steven S.; Miller, Aaron J.; Schwall, Robert E.; Mirin, Richard P.; Nam, Sae Woo (2005-12-26). "Single photon source characterization with a superconducting single photon detector". Optics Express. 13 (26): 10846–10853. arXiv: quant-ph/0511030 . Bibcode:2005OExpr..1310846H. doi:10.1364/OPEX.13.010846. ISSN   1094-4087. PMID   19503303. S2CID   11428224.
  64. McCarthy, Aongus; Krichel, Nils J.; Gemmell, Nathan R.; Ren, Ximing; Tanner, Michael G.; Dorenbos, Sander N.; Zwiller, Val; Hadfield, Robert H.; Buller, Gerald S. (2013). "Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection". Optics Express. 21 (7): 8904–8915. Bibcode:2013OExpr..21.8904M. doi: 10.1364/OE.21.008904 . PMID   23571981.
  65. Taylor, Gregor G.; Morozov, Dmitry; Gemmell, Nathan R.; Erotokritou, Kleanthis; Miki, Shigehito; Miki, Shigehito; Terai, Hirotaka; Hadfield, Robert H. (2019-12-23). "Photon counting LIDAR at 2.3 μm wavelength with superconducting nanowires". Optics Express. 27 (26): 38147–38158. doi: 10.1364/OE.27.038147 . ISSN   1094-4087. PMID   31878586. S2CID   209489291.
  66. Hadfield, Robert H.; Leach, Jonathan; Fleming, Fiona; Paul, Douglas J.; Tan, Chee Hing; Ng, Jo Shien; Henderson, Robert K.; Buller, Gerald S. (2023). "Single-photon detection for long-range imaging and sensing". Optica. 10 (9): 1124. Bibcode:2023Optic..10.1124H. doi: 10.1364/optica.488853 . hdl: 20.500.11820/4d60bb02-3c2c-4f86-a737-f985cb8613d8 . Retrieved 2023-08-29.
  67. Reithmaier, G.; Kaniber, M.; Flassig, F.; Lichtmannecker, S.; Müller, K.; Andrejew, A.; Vučković, J.; Gross, R.; Finley, J. J. (2015). "On-Chip Generation, Routing, and Detection of Resonance Fluorescence". Nano Letters. 15 (8): 5208–5213. arXiv: 1408.2275 . Bibcode:2015NanoL..15.5208R. doi:10.1021/acs.nanolett.5b01444. PMID   26102603. S2CID   15612865.
  68. Silverstone, J. W.; Bonneau, D.; Ohira, K.; Suzuki, N.; Yoshida, H.; Iizuka, N.; Ezaki, M.; Natarajan, C. M.; Tanner, M. G.; Hadfield, R. H.; Zwiller, V. (February 2014). "On-chip quantum interference between silicon photon-pair sources". Nature Photonics. 8 (2): 104–108. arXiv: 1304.1490 . Bibcode:2014NaPho...8..104S. doi:10.1038/nphoton.2013.339. ISSN   1749-4893. S2CID   21739609.
  69. Shainline, Jeffrey M.; Buckley, Sonia M.; McCaughan, Adam N.; Chiles, Jeffrey T.; Jafari Salim, Amir; Castellanos-Beltran, Manuel; Donnelly, Christine A.; Schneider, Michael L.; Mirin, Richard P.; Nam, Sae Woo (2019-07-25). "Superconducting optoelectronic loop neurons". Journal of Applied Physics. 126 (4): 044902. Bibcode:2019JAP...126d4902S. doi: 10.1063/1.5096403 . ISSN   0021-8979.
  70. Casaburi, Alessandro; Hadfield, Robert H. (October 2022). "Superconducting circuits that mimic the brain". Nature Electronics. 5 (10): 627–628. doi:10.1038/s41928-022-00855-2. ISSN   2520-1131. S2CID   253002403.
  71. Tanner, Michael G.; Dyer, Shellee D.; Baek, Burm; Hadfield, Robert H.; Woo Nam, Sae (2011-11-14). "High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors". Applied Physics Letters. 99 (20): 201110. Bibcode:2011ApPhL..99t1110T. doi:10.1063/1.3656702. ISSN   0003-6951.
  72. "News | Successful rocket test with ID Quantique photon counting OTDR". ID Quantique. 2020-10-28. Retrieved 2021-05-16.
  73. Todaro, S. L.; Verma, V. B.; McCormick, K. C.; Allcock, D. T. C.; Mirin, R. P.; Wineland, D. J.; Nam, S. W.; Wilson, A. C.; Leibfried, D.; Slichter, D. H. (2021-01-06). "State Readout of a Trapped Ion Qubit Using a Trap-Integrated Superconducting Photon Detector". Physical Review Letters. 126 (1): 010501. arXiv: 2008.00065 . Bibcode:2021PhRvL.126a0501T. doi:10.1103/PhysRevLett.126.010501. PMC   11641243 . PMID   33480763. S2CID   220936640.
  74. Heeres, Reinier W.; Dorenbos, Sander N.; Koene, Benny; Solomon, Glenn S.; Kouwenhoven, Leo P.; Zwiller, Valery (2010). "On-Chip Single Plasmon Detection". Nano Letters. 10 (2): 661–664. arXiv: 1001.2723 . Bibcode:2010NanoL..10..661H. doi:10.1021/nl903761t. PMID   20041700. S2CID   20962227.
  75. Heeres, Reinier W.; Kouwenhoven, Leo P.; Zwiller, Valery (2013). "Quantum interference in plasmonic circuits". Nature Nanotechnology. 8 (10): 719–722. arXiv: 1309.6942 . Bibcode:2013NatNa...8..719H. doi:10.1038/nnano.2013.150. PMID   23934097. S2CID   18196878.
  76. Rosticher, M.; Ladan, F. R.; Maneval, J. P.; Dorenbos, S. N.; Zijlstra, T.; Klapwijk, T. M.; Zwiller, V.; Lupaşcu, A.; Nogues, G. (2010). "A high efficiency superconducting nanowire single electron detector" (PDF). Applied Physics Letters. 97 (18): 183106. Bibcode:2010ApPhL..97r3106R. doi:10.1063/1.3506692. S2CID   123559525.
  77. Azzouz, Hatim; Dorenbos, Sander N.; De Vries, Daniel; Ureña, Esteban Bermúdez; Zwiller, Valery (2012). "Efficient single particle detection with a superconducting nanowire". AIP Advances. 2 (3): 032124. Bibcode:2012AIPA....2c2124A. doi: 10.1063/1.4740074 .
  78. Gemmell, Nathan R.; McCarthy, Aongus; Liu, Baochang; Tanner, Michael G.; Dorenbos, Sander D.; Zwiller, Valery; Patterson, Michael S.; Buller, Gerald S.; Wilson, Brian C.; Hadfield, Robert H. (2013). "Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector". Optics Express. 21 (4): 5005–5013. arXiv: 1302.6371 . Bibcode:2013OExpr..21.5005G. doi:10.1364/OE.21.005005. PMID   23482033. S2CID   33116480.
  79. Boroson, Don M.; Bondurant, Roy S.; Scozzafava, Joseph J. (2004). "Overview of high-rate deep-space laser communications options". In Mecherle, G. S; Young, Cynthia Y; Stryjewski, John S (eds.). Free-Space Laser Communication Technologies XVI. Vol. 5338. p. 37. doi:10.1117/12.543010. S2CID   122154440.
  80. Deutsch, Leslie J. (September 2020). "Towards deep space optical communications". Nature Astronomy. 4 (9): 907. Bibcode:2020NatAs...4..907D. doi:10.1038/s41550-020-1193-1. ISSN   2397-3366. S2CID   225206152.
  81. Hochberg, Yonit; Charaev, Ilya; Nam, Sae-Woo; Verma, Varun; Colangelo, Marco; Berggren, Karl K. (2019-10-10). "Detecting Sub-GeV Dark Matter with Superconducting Nanowires". Physical Review Letters. 123 (15): 151802. arXiv: 1903.05101 . Bibcode:2019PhRvL.123o1802H. doi:10.1103/PhysRevLett.123.151802. PMID   31702301. S2CID   84840364.
  82. Wollman, Emma E.; Verma, Varun B.; Walter, Alexander B.; Chiles, Jeff; Korzh, Boris; Allmaras, Jason P.; Zhai, Yao; Lita, Adriana E.; McCaughan, Adam N.; Schmidt, Ekkehart; Frasca, Simone (January 2021). "Recent advances in superconducting nanowire single-photon detector technology for exoplanet transit spectroscopy in the mid-infrared". Journal of Astronomical Telescopes, Instruments, and Systems. 7 (1): 011004. Bibcode:2021JATIS...7a1004W. doi: 10.1117/1.JATIS.7.1.011004 . ISSN   2329-4124. S2CID   232484010.
  83. Gemmell, N. R. (September 2017). "A miniaturized 4 K platform for superconducting infrared photon counting detectors". Superconductor Science and Technology. 30 (11): 11LT01. Bibcode:2017SuScT..30kLT01G. doi: 10.1088/1361-6668/aa8ac7 .
  84. Cooper, Bernard E; Hadfield, Robert H (2022-06-28). "Viewpoint: Compact cryogenics for superconducting photon detectors". Superconductor Science and Technology. 35 (8): 080501. Bibcode:2022SuScT..35h0501C. doi: 10.1088/1361-6668/ac76e9 . ISSN   0953-2048. S2CID   249534834.