Program overview | |
---|---|
Country | United States |
Organization | NASA |
Manager | Jet Propulsion Laboratory |
Purpose | Laser communication in space |
Status | Ongoing |
Program history | |
Duration | 2017 | –present
Deep Space Optical Communications (DSOC) is a laser space communication system in operation that improved communications performance 10 to 100 times over radio frequency technology without incurring increases in mass, volume or power. [1] DSOC is capable of providing high bandwidth downlinks from beyond cislunar space.
The project is led by NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California. In April 2024, the system successfully communicated with the Psyche spacecraft at a distance of 140 million miles. [2]
Future human expeditions may require a steady stream of high-definition imagery, live video feeds, and real-time data transmission across deep space to enable timely guidance and updates during the long-distance journeys. [1] Even at its maximum data rate of 5.2 megabits per second (Mb/s), the Mars Reconnaissance Orbiter (MRO) requires 7.5 hours to transmit all of its onboard recorder, and 1.5 hours to send a single HiRISE image to be processed back on Earth. New high-resolution hyperspectral imagers put further demands on their communications system, requiring even higher data rates. [3]
The precursor technology demonstration for this optical transceiver was launched in 2023 on board NASA's robotic Psyche mission to study the giant metal asteroid known as 16 Psyche. The laser beams from the spacecraft will be received by the 200 inch (5 m) Hale Telescope at Palomar Observatory in California. [4] Laser beams to the spacecraft will be sent from a smaller telescope at the Table Mountain Observatory in California.
First light was achieved on 14 November 2023. [5]
The first video successfully beamed from space using the technology occurred on 11 December, 2023 from a record-setting 19 million miles away (31 million kilometers, or about 80 times the Earth-Moon distance). [6]
This new technology will employ advanced lasers in the near-infrared region (1.55 μm [7] ) of the electromagnetic spectrum. [1] The architecture is based on transmitting a laser beacon from Earth to assist line-of-sight stabilization and pointing back of the downlink laser beam. In addition, efficient codes are used for error free communications. The system must correct for background noise (scattered light) from Earth's atmosphere and the Sun. [8] Given the current hardware (1 m ground transmit, 5 m ground receive, 22 cm spacecraft telescope), the uplink is expected to reach 292 kbit/s at a distance of 0.4 astronomical units (60,000,000 km; 37,000,000 mi), with the downlink reaching 100 Mbit/s at the same distance. [9] The transmitted beam-width is inversely proportional to the frequency used, so the shorter the wavelength used, the narrower and more focused a beam can be made. [3] The downlink bandwidth will depend on the ground telescope diameter and will be less during daytime. [9]
Three key DSOC technologies developed for the project include: [7] [8]
Flight laser transmitter | Ground systems |
---|---|
Laser: 4 W Wavelength: 1550 nm | Uplink: • Telescope (1 m) • 5 kW power • Wavelength 1064 nm |
Telescope: 22 cm aperture Capable of pointing up to 3 degrees of Sun | Downlink: • 5 m telescope • Operates day or night • Can point within 12 degrees of Sun |
Mass: <29 kg [9] | |
Power: <100 W |
A Deep Space Optical Communication demonstration is included with NASA's Psyche mission, launched on October 13, 2023. The Psyche spacecraft will explore the metal asteroid 16 Psyche, reaching the asteroid belt in 2029. [10] [11] [12]
DSOC first light was achieved on November 14, 2023. The experiment successfully transmitted a 15-second ultra-high definition video on December 11 from a location 19 million miles away from Earth (31 million kilometers, or about 80 times the Earth-Moon distance). The pre-loaded video of a cat named Taters was sent at the system’s maximum bit rate of 267 megabits per second (Mbps) and took 101 seconds to reach Earth. [13]
Deep Space 1 (DS1) was a NASA technology demonstration spacecraft which flew by an asteroid and a comet. It was part of the New Millennium Program, dedicated to testing advanced technologies.
Galileo was an American robotic space program that studied the planet Jupiter and its moons, as well as several other Solar System bodies. Named after the Italian astronomer Galileo Galilei, the Galileo spacecraft consisted of an orbiter and an atmospheric entry probe. It was delivered into Earth orbit on October 18, 1989, by Space ShuttleAtlantis on the STS-34 mission, and arrived at Jupiter on December 7, 1995, after gravity assist flybys of Venus and Earth, and became the first spacecraft to orbit Jupiter. The spacecraft then launched the first probe to directly measure its atmosphere. Despite suffering major antenna problems, Galileo achieved the first asteroid flyby, of 951 Gaspra, and discovered the first asteroid moon, Dactyl, around 243 Ida. In 1994, Galileo observed Comet Shoemaker–Levy 9's collision with Jupiter.
Free-space optical communication (FSO) is an optical communication technology that uses light propagating in free space to wirelessly transmit data for telecommunications or computer networking. "Free space" means air, outer space, vacuum, or something similar. This contrasts with using solids such as optical fiber cable.
The NASA Deep Space Network (DSN) is a worldwide network of spacecraft communication ground segment facilities, located in the United States (California), Spain (Madrid), and Australia (Canberra), that supports NASA's interplanetary spacecraft missions. It also performs radio and radar astronomy observations for the exploration of the Solar System and the universe, and supports selected Earth-orbiting missions. DSN is part of the NASA Jet Propulsion Laboratory (JPL).
The Spitzer Space Telescope, formerly the Space Infrared Telescope Facility (SIRTF), is an infrared space telescope launched in 2003, that was deactivated when operations ended on 30 January 2020. Spitzer was the third space telescope dedicated to infrared astronomy, following IRAS (1983) and ISO (1995–1998). It was the first spacecraft to use an Earth-trailing orbit, later used by the Kepler planet-finder.
Near-Earth Asteroid Tracking (NEAT) was a program run by NASA and the Jet Propulsion Laboratory, surveying the sky for near-Earth objects. NEAT was conducted from December 1995 until April 2007, at GEODSS on Hawaii, as well as at Palomar Observatory in California. With the discovery of more than 40 thousand minor planets, NEAT has been one of the most successful programs in this field, comparable to the Catalina Sky Survey, LONEOS and Mount Lemmon Survey.
Laser propulsion is a form of beam-powered propulsion where the energy source is a remote laser system and separate from the reaction mass. This form of propulsion differs from a conventional chemical rocket where both energy and reaction mass come from the solid or liquid propellants carried on board the vehicle.
The Goldstone Deep Space Communications Complex (GDSCC), commonly called the Goldstone Observatory, is a satellite ground station located in Fort Irwin in the U.S. state of California. Operated by NASA's Jet Propulsion Laboratory (JPL), its main purpose is to track and communicate with interplanetary space missions. It is named after Goldstone, California, a nearby gold-mining ghost town.
TAU was a proposed uncrewed interstellar probe that would go to a distance of one thousand astronomical units from the Earth and Sun by the NASA Jet Propulsion Laboratory in 1987 using tested technology. One scientific purpose would be to measure the distance to other stars via stellar parallax. Studies continued into 1990, working with a launch in the 2005–2010 timeframe.
Deep space exploration is the branch of astronomy, astronautics and space technology that is involved with exploring the distant regions of outer space. However, there is little consensus on the meaning of "distant" regions. In some contexts, it is used to refer to interstellar space. The International Telecommunication Union defines "deep space" to start at a distance of 2 million km from the Earth's surface. NASA's Deep Space Network has variously used criteria of 16,000 to 32,000 km from Earth. Physical exploration of space is conducted both by human spaceflights and by robotic spacecraft.
The Unified S-band (USB) system is a tracking and communication system developed for the Apollo program by NASA and the Jet Propulsion Laboratory (JPL). It operated in the S band portion of the microwave spectrum, unifying voice communications, television, telemetry, command, tracking and ranging into a single system to save size and weight and simplify operations. The USB ground network was managed by the Goddard Space Flight Center (GSFC). Commercial contractors included Collins Radio, Blaw-Knox, Motorola and Energy Systems.
NEO Surveyor, formerly called Near-Earth Object Camera (NEOCam), then NEO Surveillance Mission, is a planned space-based infrared telescope designed to survey the Solar System for potentially hazardous asteroids.
The Laser Communications Relay Demonstration (LCRD) is a NASA mission that will test laser communication in space for extremely long distances, between Earth and geosynchronous orbit.
Optical Payload for Lasercomm Science (OPALS) is a spacecraft communication instrument developed at the Jet Propulsion Laboratory that was tested on the International Space Station (ISS) from 18 April 2014 to 17 July 2014 to demonstrate the technology for laser communications systems between spacecraft and ground stations.
Laser communication in space is the use of free-space optical communication in outer space. Communication may be fully in space or in a ground-to-satellite or satellite-to-ground application. The main advantage of using laser communications over radio waves is increased bandwidth, enabling the transfer of more data in less time.
Psyche is a NASA Discovery Program space mission launched on October 13, 2023 to explore the origin of planetary cores by orbiting and studying the metallic asteroid 16 Psyche beginning in 2029. NASA's Jet Propulsion Laboratory (JPL) manages the project.
The selection process for Mission 13 and 14 of the Discovery program began in February 2014, as NASA drafted an Announcement of Opportunity (AO) for the next Discovery mission. The winning mission proposals received $450 million in funding towards mission development and construction, along with bonus funding if missions were able to incorporate certain technologies. For Discovery Mission 13 and 14, NASA received 28 proposals, 16 of which notably centered around small Solar System bodies. Lucy, a multiple-flyby mission to the Jupiter trojans, and Psyche, a mission to the metallic asteroid 16 Psyche, were announced as the winners of the competition in January 2017, with launches in October 2021 and October 2023, respectively.
LADEE's Lunar Laser Communication Demonstration (LLCD) was a payload on NASA's Lunar Atmosphere and Dust Environment Explorer lunar orbiter.
Double Asteroid Redirection Test (DART) was a NASA space mission aimed at testing a method of planetary defense against near-Earth objects (NEOs). It was designed to assess how much a spacecraft impact deflects an asteroid through its transfer of momentum when hitting the asteroid head-on. The selected target asteroid, Dimorphos, is a minor-planet moon of the asteroid Didymos; neither asteroid poses an impact threat to Earth, but their joint characteristics made them an ideal benchmarking target. Launched on 24 November 2021, the DART spacecraft successfully collided with Dimorphos on 26 September 2022 at 23:14 UTC about 11 million kilometers from Earth. The collision shortened Dimorphos' orbit by 32 minutes, greatly in excess of the pre-defined success threshold of 73 seconds. DART's success in deflecting Dimorphos was due to the momentum transfer associated with the recoil of the ejected debris, which was substantially larger than that caused by the impact itself.
Earth Escape Explorer (CU-E3) is a nanosatellite of the 6U CubeSat format that will demonstrate long-distance communications while in heliocentric orbit.