![]() | |
![]() | |
Names | |
---|---|
IUPAC name Singlet oxygen | |
Systematic IUPAC name Dioxidene | |
Identifiers | |
3D model (JSmol) | |
ChEBI | |
491 | |
| |
| |
Properties | |
O2 | |
Molar mass | 31.998 g·mol−1 |
Reacts | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Singlet oxygen, systematically named dioxygen(singlet) and dioxidene, is a gaseous inorganic chemical with the formula O=O (also written as 1
[O
2] or 1
O
2), which is in a quantum state where all electrons are spin paired. It is kinetically unstable at ambient temperature, but the rate of decay is slow.
The lowest excited state of the diatomic oxygen molecule is a singlet state. It is a gas with physical properties differing only subtly from those of the more prevalent triplet ground state of O2. In terms of its chemical reactivity, however, singlet oxygen is far more reactive toward organic compounds. It is responsible for the photodegradation of many materials but can be put to constructive use in preparative organic chemistry and photodynamic therapy. Trace amounts of singlet oxygen are found in the upper atmosphere and in polluted urban atmospheres where it contributes to the formation of lung-damaging nitrogen dioxide. [1] : 355–68 It often appears and coexists confounded in environments that also generate ozone, such as pine forests with photodegradation of turpentine.[ citation needed ]
The terms 'singlet oxygen' and 'triplet oxygen' derive from each form's number of electron spins. The singlet has only one possible arrangement of electron spins with a total quantum spin of 0, while the triplet has three possible arrangements of electron spins with a total quantum spin of 1, corresponding to three degenerate states.
In spectroscopic notation, the lowest singlet and triplet forms of O2 are labeled 1Δg and 3Σ−
g, respectively. [2] [3] [4]
Singlet oxygen refers to one of two singlet electronic excited states. The two singlet states are denoted 1Σ+
g and 1Δg (the preceding superscript "1" indicates a singlet state). The singlet states of oxygen are 158 and 95 kilojoules per mole higher in energy than the triplet ground state of oxygen. Under most common laboratory conditions, the higher energy 1Σ+
g singlet state rapidly converts to the more stable, lower energy 1Δg singlet state. [2] This more stable of the two excited states has its two valence electrons spin-paired in one π* orbital while the second π* orbital is empty. This state is referred to by the title term, singlet oxygen, commonly abbreviated 1O2, to distinguish it from the triplet ground state molecule, 3O2. [2] [3]
Molecular orbital theory predicts the electronic ground state denoted by the molecular term symbol 3Σ–
g, and two low-lying excited singlet states with term symbols 1Δg and 1Σ+
g. These three electronic states differ only in the spin and the occupancy of oxygen's two antibonding πg-orbitals, which are degenerate (equal in energy). These two orbitals are classified as antibonding and are of higher energy. Following Hund's first rule, in the ground state, these electrons are unpaired and have like (same) spin. This open-shell triplet ground state of molecular oxygen differs from most stable diatomic molecules, which have singlet (1Σ+
g) ground states. [5]
Two less stable, higher energy excited states are readily accessible from this ground state, again in accordance with Hund's first rule; [6] the first moves one of the high energy unpaired ground state electrons from one degenerate orbital to the other, where it "flips" and pairs the other, and creates a new state, a singlet state referred to as the 1Δg state (a term symbol, where the preceding superscripted "1" indicates it as a singlet state). [2] [3] Alternatively, both electrons can remain in their degenerate ground state orbitals, but the spin of one can "flip" so that it is now opposite to the second (i.e., it is still in a separate degenerate orbital, but no longer of like spin); this also creates a new state, a singlet state referred to as the 1Σ+
g state. [2] [3] The ground and first two singlet excited states of oxygen can be described by the simple scheme in the figure below. [7] [8]
The 1Δg singlet state is 7882.4 cm−1 above the triplet 3Σ−
g ground state., [3] [9] which in other units corresponds to 94.29 kJ/mol or 0.9773 eV. The 1Σ+
g singlet is 13 120.9 cm−1 [3] [9] (157.0 kJ/mol or 1.6268 eV) above the ground state.
Radiative transitions between the three low-lying electronic states of oxygen are formally forbidden as electric dipole processes. [10] The two singlet-triplet transitions are forbidden both because of the spin selection rule ΔS = 0 and because of the parity rule that g-g transitions are forbidden. [11] The singlet-singlet transition between the two excited states is spin-allowed but parity-forbidden.
The lower, O2(1Δg) state is commonly referred to as singlet oxygen. The energy difference of 94.3 kJ/mol between ground state and singlet oxygen corresponds to a forbidden singlet-triplet transition in the near-infrared at ~1270 nm. [12] As a consequence, singlet oxygen in the gas phase is relatively long lived (54-86 milliseconds), [13] although interaction with solvents reduces the lifetime to microseconds or even nanoseconds. [14] In 2021, the lifetime of airborne singlet oxygen at air/solid interfaces was measured to be 550 microseconds. [15]
The higher 1Σ+
g state is moderately short lived. In the gas phase, it relaxes primarily to the ground state triplet with a mean lifetime of 11.8 seconds. [10] However in solvents such as CS2 and CCl4, it relaxes to the lower singlet 1Δg in milliseconds due to radiationless decay channels. [10]
Both singlet oxygen states have no unpaired electrons and therefore no net electron spin. The 1Δg is however paramagnetic as shown by the observation of an electron paramagnetic resonance (EPR) spectrum. [16] [17] [18] The paramagnetism of the 1Δg state is due to a net orbital (and not spin) electronic angular momentum. In a magnetic field the degeneracy of the levels is split into two levels with z projections of angular momenta +1ħ and −1ħ around the molecular axis. The magnetic transition between these levels gives rise to the EPR transition.
Various methods for the production of singlet oxygen exist. Irradiation of oxygen gas in the presence of an organic dye as a sensitizer, such as rose bengal, methylene blue, or porphyrins—a photochemical method—results in its production. [19] [9] Large steady state concentrations of singlet oxygen are reported from the reaction of triplet excited state pyruvic acid with dissolved oxygen in water. [20] Singlet oxygen can also be produced by chemical procedures without irradiation. One chemical method involves the decomposition of triethylsilyl hydrotrioxide generated in situ from triethylsilane and ozone. [21]
Another method uses a reaction of hydrogen peroxide with sodium hypochlorite in aqueous solution: [19]
A retro-Diels Alder reaction of the diphenylanthracene peroxide can also yield singlet oxygen, along with an diphenylanthracene: [22]
A third method liberates singlet oxygen via phosphite ozonides, which are, in turn, generated in situ such as triphenyl phosphite ozonide. [23] [24] Phosphite ozonides will decompose to give singlet oxygen: [25]
An advantage of this method is that it is amenable to non-aqueous conditions. [25]
Because of differences in their electron shells, singlet and triplet oxygen differ in their chemical properties; singlet oxygen is highly reactive. [26] The lifetime of singlet oxygen depends on the medium and pressure. In normal organic solvents, the lifetime is only a few microseconds whereas in solvents lacking C-H bonds, the lifetime can be as long as seconds. [25] [27]
Unlike ground state oxygen, singlet oxygen participates in Diels–Alder [4+2]- and [2+2]-cycloaddition reactions and formal concerted ene reactions (Schenck ene reaction), causing photooxygenation. [25] It oxidizes thioethers to sulfoxides. Organometallic complexes are often degraded by singlet oxygen. [28] [29] With some substrates 1,2-dioxetanes are formed; cyclic dienes such as 1,3-cyclohexadiene form [4+2] cycloaddition adducts. [30]
The [4+2]-cycloaddition between singlet oxygen and furans is widely used in organic synthesis. [31] [32]
In singlet oxygen reactions with alkenic allyl groups, e.g., citronella, shown, by abstraction of the allylic proton, in an ene-like reaction, yielding the allyl hydroperoxide, R–O–OH (R = alkyl), which can then be reduced to the corresponding allylic alcohol. [25] [33] [34] [35]
In reactions with water, trioxidane, an unusual molecule with three consecutive linked oxygen atoms, is formed.[ citation needed ]
This section needs additional citations for verification .(August 2015) |
In photosynthesis, singlet oxygen can be produced from the light-harvesting chlorophyll molecules. One of the roles of carotenoids in photosynthetic systems is to prevent damage caused by produced singlet oxygen by either removing excess light energy from chlorophyll molecules or quenching the singlet oxygen molecules directly.
In mammalian biology, singlet oxygen is one of the reactive oxygen species, which is linked to oxidation of LDL cholesterol and resultant cardiovascular effects. Polyphenol antioxidants can scavenge and reduce concentrations of reactive oxygen species and may prevent such deleterious oxidative effects. [36]
Ingestion of pigments capable of producing singlet oxygen with activation by light can produce severe photosensitivity of skin (see phototoxicity, photosensitivity in humans, photodermatitis, phytophotodermatitis). This is especially a concern in herbivorous animals (see Photosensitivity in animals).
Singlet oxygen is the active species in photodynamic therapy.
Singlet oxygen luminesces concomitant with its decay to the triplet ground state. This phenomenon was first observed in the thermal degradation of the endo peroxide of rubrene. [38]
Photochemistry is the branch of chemistry concerned with the chemical effects of light. Generally, this term is used to describe a chemical reaction caused by absorption of ultraviolet, visible (400–750 nm), or infrared radiation (750–2500 nm).
Intersystem crossing (ISC) is an isoenergetic radiationless process involving a transition between the two electronic states with different spin multiplicity.
Cyclobutadiene is an organic compound with the formula C4H4. It is very reactive owing to its tendency to dimerize. Although the parent compound has not been isolated, some substituted derivatives are robust and a single molecule of cyclobutadiene is quite stable. Since the compound degrades by a bimolecular process, the species can be observed by matrix isolation techniques at temperatures below 35 K. It is thought to adopt a rectangular structure.
Sulfur monoxide is an inorganic compound with formula SO. It is only found as a dilute gas phase. When concentrated or condensed, it converts to S2O2 (disulfur dioxide). It has been detected in space but is rarely encountered intact otherwise.
Ozonide is the polyatomic anion O−3. Cyclic organic compounds formed by the addition of ozone to an alkene are also called ozonides.
Photosensitizers are light absorbers that alter the course of a photochemical reaction. They usually are catalysts. They can function by many mechanisms, sometimes they donate an electron to the substrate, sometimes they abstract a hydrogen atom from the substrate. At the end of this process, the photosensitizer returns to its ground state, where it remains chemically intact, poised to absorb more light. One branch of chemistry which frequently utilizes photosensitizers is polymer chemistry, using photosensitizers in reactions such as photopolymerization, photocrosslinking, and photodegradation. Photosensitizers are also used to generate prolonged excited electronic states in organic molecules with uses in photocatalysis, photon upconversion and photodynamic therapy. Generally, photosensitizers absorb electromagnetic radiation consisting of infrared radiation, visible light radiation, and ultraviolet radiation and transfer absorbed energy into neighboring molecules. This absorption of light is made possible by photosensitizers' large de-localized π-systems, which lowers the energy of HOMO and LUMO orbitals to promote photoexcitation. While many photosensitizers are organic or organometallic compounds, there are also examples of using semiconductor quantum dots as photosensitizers.
Triplet oxygen, 3O2, refers to the S = 1 electronic ground state of molecular oxygen (dioxygen). Molecules of triplet oxygen contain two unpaired electrons, making triplet oxygen an unusual example of a stable and commonly encountered diradical: it is more stable as a triplet than a singlet. According to molecular orbital theory, the electron configuration of triplet oxygen has two electrons occupying two π molecular orbitals (MOs) of equal energy (that is, degenerate MOs). In accordance with Hund's rules, they remain unpaired and spin-parallel, which accounts for the paramagnetism of molecular oxygen. These half-filled orbitals are antibonding in character, reducing the overall bond order of the molecule to 2 from the maximum value of 3 that would occur when these antibonding orbitals remain fully unoccupied, as in dinitrogen. The molecular term symbol for triplet oxygen is 3Σ−
g.
Photodegradation is the alteration of materials by light. Commonly, the term is used loosely to refer to the combined action of sunlight and air, which cause oxidation and hydrolysis. Often photodegradation is intentionally avoided, since it destroys paintings and other artifacts. It is, however, partly responsible for remineralization of biomass and is used intentionally in some disinfection technologies. Photodegradation does not apply to how materials may be aged or degraded via infrared light or heat, but does include degradation in all of the ultraviolet light wavebands.
In chemistry, a diradical is a molecular species with two electrons occupying molecular orbitals (MOs) which are degenerate. The term "diradical" is mainly used to describe organic compounds, where most diradicals are extremely reactive and non-Kekulé molecules that are rarely isolated. Diradicals are even-electron molecules but have one fewer bond than the number permitted by the octet rule.
Diatomic carbon (systematically named dicarbon and 1λ2,2λ2-ethene), is a green, gaseous inorganic chemical with the chemical formula C=C (also written [C2] or C2). It is kinetically unstable at ambient temperature and pressure, being removed through autopolymerisation. It occurs in carbon vapor, for example in electric arcs; in comets, stellar atmospheres, and the interstellar medium; and in blue hydrocarbon flames. Diatomic carbon is the second simplest of the allotropes of carbon (after atomic carbon), and is an intermediate participant in the genesis of fullerenes.
Tris(bipyridine)ruthenium(II) chloride is the chloride salt coordination complex with the formula [Ru(bpy)3]Cl2. This polypyridine complex is a red crystalline salt obtained as the hexahydrate, although all of the properties of interest are in the cation [Ru(bpy)3]2+, which has received much attention because of its distinctive optical properties. The chlorides can be replaced with other anions, such as PF6−.
In spectroscopy and quantum chemistry, the multiplicity of an energy level is defined as 2S+1, where S is the total spin angular momentum. States with multiplicity 1, 2, 3, 4, 5 are respectively called singlets, doublets, triplets, quartets and quintets.
In organic chemistry, the di-π-methane rearrangement is the photochemical rearrangement of a molecule that contains two π-systems separated by a saturated carbon atom. In the aliphatic case, this molecules is a 1,4-diene; in the aromatic case, an allyl-substituted arene. The reaction forms (respectively) an ene- or aryl-substituted cyclopropane. Formally, it amounts to a 1,2 shift of one ene group or the aryl group, followed by bond formation between the lateral carbons of the non-migrating moiety:
There are several known allotropes of oxygen. The most familiar is molecular oxygen, present at significant levels in Earth's atmosphere and also known as dioxygen or triplet oxygen. Another is the highly reactive ozone. Others are:
An electric effect influences the structure, reactivity, or properties of a molecule but is neither a traditional bond nor a steric effect. In organic chemistry, the term stereoelectronic effect is also used to emphasize the relation between the electronic structure and the geometry (stereochemistry) of a molecule.
In chemistry, a radical, also known as a free radical, is an atom, molecule, or ion that has at least one unpaired valence electron. With some exceptions, these unpaired electrons make radicals highly chemically reactive. Many radicals spontaneously dimerize. Most organic radicals have short lifetimes.
Methylene is an organic compound with the chemical formula CH
2. It is a colourless gas that fluoresces in the mid-infrared range, and only persists in dilution, or as an adduct.
A photooxygenation is a light-induced oxidation reaction in which molecular oxygen is incorporated into the product(s). Initial research interest in photooxygenation reactions arose from Oscar Raab's observations in 1900 that the combination of light, oxygen and photosensitizers is highly toxic to cells. Early studies of photooxygenation focused on oxidative damage to DNA and amino acids, but recent research has led to the application of photooxygenation in organic synthesis and photodynamic therapy.
9-Fluorenylidene is an aryl carbene derived from the bridging methylene group of fluorene. Fluorenylidene has the unusual property that the triplet ground state is only 1.1 kcal/mol lower in energy than the singlet state. For this reason, fluorenylidene has been studied extensively in organic chemistry.
Triphenyl phosphite ozonide (TPPO) is a chemical compound with the formula PO3(C6H5O)3 that is used to generate singlet oxygen.