Selection rule

Last updated

In physics and chemistry, a selection rule, or transition rule, formally constrains the possible transitions of a system from one quantum state to another. Selection rules have been derived for electromagnetic transitions in molecules, in atoms, in atomic nuclei, and so on. The selection rules may differ according to the technique used to observe the transition. The selection rule also plays a role in chemical reactions, where some are formally spin-forbidden reactions, that is, reactions where the spin state changes at least once from reactants to products.

Contents

In the following, mainly atomic and molecular transitions are considered.

Overview

In quantum mechanics the basis for a spectroscopic selection rule is the value of the transition moment integral  [1]

where and are the wave functions of the two states, "state 1" and "state 2", involved in the transition, and μ is the transition moment operator. This integral represents the propagator (and thus the probability) of the transition between states 1 and 2; if the value of this integral is zero then the transition is "forbidden".

In practice, to determine a selection rule the integral itself does not need to be calculated: It is sufficient to determine the symmetry of the transition moment function If the transition moment function is symmetric over all of the totally symmetric representation of the point group to which the atom or molecule belongs, then the integral's value is (in general) not zero and the transition is allowed. Otherwise, the transition is "forbidden".

The transition moment integral is zero if the transition moment function, is anti-symmetric or odd, i.e. holds. The symmetry of the transition moment function is the direct product of the parities of its three components. The symmetry characteristics of each component can be obtained from standard character tables. Rules for obtaining the symmetries of a direct product can be found in texts on character tables. [2]

Symmetry characteristics of transition moment operator [2]
Transition typeμ transforms asContext
Electric dipolex, y, zOptical spectra
Electric quadrupolex2, y2, z2, xy, xz, yzConstraint x2 + y2 + z2 = 0
Electric polarizabilityx2, y2, z2, xy, xz, yzRaman spectra
Magnetic dipoleRx, Ry, RzOptical spectra (weak)

Examples

Electronic spectra

The Laporte rule is a selection rule formally stated as follows: In a centrosymmetric environment, transitions between like atomic orbitals such as s-s, p-p, d-d, or f-f, transitions are forbidden. The Laporte rule (law) applies to electric dipole transitions, so the operator has u symmetry (meaning ungerade, odd). [3] p orbitals also have u symmetry, so the symmetry of the transition moment function is given by the product (formally, the product is taken in the group) u×u×u, which has u symmetry. The transitions are therefore forbidden. Likewise, d orbitals have g symmetry (meaning gerade, even), so the triple product g×u×g also has u symmetry and the transition is forbidden. [4]

The wave function of a single electron is the product of a space-dependent wave function and a spin wave function. Spin is directional and can be said to have odd parity. It follows that transitions in which the spin "direction" changes are forbidden. In formal terms, only states with the same total spin quantum number are "spin-allowed". [5] In crystal field theory, d-d transitions that are spin-forbidden are much weaker than spin-allowed transitions. Both can be observed, in spite of the Laporte rule, because the actual transitions are coupled to vibrations that are anti-symmetric and have the same symmetry as the dipole moment operator. [6]

Vibrational spectra

In vibrational spectroscopy, transitions are observed between different vibrational states. In a fundamental vibration, the molecule is excited from its ground state (v = 0) to the first excited state (v = 1). The symmetry of the ground-state wave function is the same as that of the molecule. It is, therefore, a basis for the totally symmetric representation in the point group of the molecule. It follows that, for a vibrational transition to be allowed, the symmetry of the excited state wave function must be the same as the symmetry of the transition moment operator. [7]

In infrared spectroscopy, the transition moment operator transforms as either x and/or y and/or z. The excited state wave function must also transform as at least one of these vectors. In Raman spectroscopy, the operator transforms as one of the second-order terms in the right-most column of the character table, below. [2]

Character table for the Td point group
E8 C33 C26 S46 σd
A111111x2 + y2 + z2
A2111-1-1
E 2-1200(2 z2 - x2 - y2,x2 - y2)
T130-11-1 (Rx, Ry, Rz)
T230-1-11 (x, y, z)(xy, xz, yz)

The molecule methane, CH4, may be used as an example to illustrate the application of these principles. The molecule is tetrahedral and has Td symmetry. The vibrations of methane span the representations A1 + E + 2T2. [8] Examination of the character table shows that all four vibrations are Raman-active, but only the T2 vibrations can be seen in the infrared spectrum. [9]

In the harmonic approximation, it can be shown that overtones are forbidden in both infrared and Raman spectra. However, when anharmonicity is taken into account, the transitions are weakly allowed. [10]

In Raman and infrared spectroscopy, the selection rules predict certain vibrational modes to have zero intensities in the Raman and/or the IR. [11] Displacements from the ideal structure can result in relaxation of the selection rules and appearance of these unexpected phonon modes in the spectra. Therefore, the appearance of new modes in the spectra can be a useful indicator of symmetry breakdown. [12] [13]

Rotational spectra

The selection rule for rotational transitions, derived from the symmetries of the rotational wave functions in a rigid rotor, is ΔJ = ±1, where J is a rotational quantum number. [14]

Coupled transitions

The infrared spectrum of HCl gas HCl rotiational spectrum.jpg
The infrared spectrum of HCl gas

There are many types of coupled transition such as are observed in vibration–rotation spectra. The excited-state wave function is the product of two wave functions such as vibrational and rotational. The general principle is that the symmetry of the excited state is obtained as the direct product of the symmetries of the component wave functions. [15] In rovibronic transitions, the excited states involve three wave functions.

The infrared spectrum of hydrogen chloride gas shows rotational fine structure superimposed on the vibrational spectrum. This is typical of the infrared spectra of heteronuclear diatomic molecules. It shows the so-called P and R branches. The Q branch, located at the vibration frequency, is absent. Symmetric top molecules display the Q branch. This follows from the application of selection rules. [16]

Resonance Raman spectroscopy involves a kind of vibronic coupling. It results in much-increased intensity of fundamental and overtone transitions as the vibrations "steal" intensity from an allowed electronic transition. [17] In spite of appearances, the selection rules are the same as in Raman spectroscopy. [18]

Angular momentum

In general, electric (charge) radiation or magnetic (current, magnetic moment) radiation can be classified into multipoles Eλ (electric) or Mλ (magnetic) of order 2λ, e.g., E1 for electric dipole, E2 for quadrupole, or E3 for octupole. In transitions where the change in angular momentum between the initial and final states makes several multipole radiations possible, usually the lowest-order multipoles are overwhelmingly more likely, and dominate the transition. [19]

The emitted particle carries away angular momentum, with quantum number λ, which for the photon must be at least 1, since it is a vector particle (i.e., it has J P = 1 ). Thus, there is no radiation from E0 (electric monopoles) or M0 (magnetic monopoles, which do not seem to exist).

Since the total angular momentum has to be conserved during the transition, we have that

where and its z-projection is given by and where and are, respectively, the initial and final angular momenta of the atom. The corresponding quantum numbers λ and μ (z-axis angular momentum) must satisfy

and

Parity is also preserved. For electric multipole transitions

while for magnetic multipoles

Thus, parity does not change for E-even or M-odd multipoles, while it changes for E-odd or M-even multipoles.

These considerations generate different sets of transitions rules depending on the multipole order and type. The expression forbidden transitions is often used, but this does not mean that these transitions cannot occur, only that they are electric-dipole-forbidden. These transitions are perfectly possible; they merely occur at a lower rate. If the rate for an E1 transition is non-zero, the transition is said to be permitted; if it is zero, then M1, E2, etc. transitions can still produce radiation, albeit with much lower transitions rates. The transition rate decreases by a factor of about 1000 from one multipole to the next one, so the lowest multipole transitions are most likely to occur. [20]

Semi-forbidden transitions (resulting in so-called intercombination lines) are electric dipole (E1) transitions for which the selection rule that the spin does not change is violated. This is a result of the failure of LS coupling.

Summary table

is the total angular momentum, is the azimuthal quantum number, is the spin quantum number, and is the secondary total angular momentum quantum number. Which transitions are allowed is based on the hydrogen-like atom. The symbol is used to indicate a forbidden transition.

Allowed transitionsElectric dipole (E1)Magnetic dipole (M1)Electric quadrupole (E2)Magnetic quadrupole (M2)Electric octupole (E3)Magnetic octupole (M3)
Rigorous rules(1)
(2) if
(3)
LS coupling(4)One electron jump

No electron jump

,
None or one electron jump

One electron jump

One electron jump

One electron jump

(5)If

If

If

If

Intermediate coupling(6)If

If

If

If

If

In hyperfine structure, the total angular momentum of the atom is where is the nuclear spin angular momentum and is the total angular momentum of the electron(s). Since has a similar mathematical form as it obeys a selection rule table similar to the table above.

Surface

In surface vibrational spectroscopy, the surface selection rule is applied to identify the peaks observed in vibrational spectra. When a molecule is adsorbed on a substrate, the molecule induces opposite image charges in the substrate. The dipole moment of the molecule and the image charges perpendicular to the surface reinforce each other. In contrast, the dipole moments of the molecule and the image charges parallel to the surface cancel out. Therefore, only molecular vibrational peaks giving rise to a dynamic dipole moment perpendicular to the surface will be observed in the vibrational spectrum.

See also

Notes

  1. Harris & Bertolucci, p. 130
  2. 1 2 3 Salthouse, J.A.; Ware, M.J. (1972). Point Group Character Tables and Related Data. Cambridge University Press. ISBN   0-521-08139-4.
  3. Anything with u (German ungerade) symmetry is antisymmetric with respect to the centre of symmetry. g (German gerade) signifies symmetric with respect to the centre of symmetry. If the transition moment function has u symmetry, the positive and negative parts will be equal to each other, so the integral has a value of zero.
  4. Harris & Berolucci, p. 330
  5. Harris & Berolucci, p. 336
  6. Cotton Section 9.6, Selection rules and polarizations
  7. Cotton, Section 10.6 Selection rules for fundamental vibrational transitions
  8. Cotton, Chapter 10 Molecular Vibrations
  9. Cotton p. 327
  10. Califano, S. (1976). Vibrational states. Wiley. ISBN   0-471-12996-8. Chapter 9, Anharmonicity
  11. Fateley, W. G., Neil T. McDevitt, and Freeman F. Bentley. "Infrared and Raman selection rules for lattice vibrations: the correlation method." Applied Spectroscopy 25.2 (1971): 155-173.
  12. Arenas, D. J., et al. "Raman study of phonon modes in bismuth pyrochlores." Physical Review B 82.21 (2010): 214302. || DOI:https://doi.org/10.1103/PhysRevB.82.214302
  13. Zhao, Yanyuan, et al. "Phonons in Bi 2 S 3 nanostructures: Raman scattering and first-principles studies." Physical Review B 84.20 (2011): 205330. || DOI:https://doi.org/10.1103/PhysRevB.84.205330
  14. Kroto, H.W. (1992). Molecular Rotation Spectra. new York: Dover. ISBN   0-486-49540-X.
  15. Harris & Berolucci, p. 339
  16. Harris & Berolucci, p. 123
  17. Long, D.A. (2001). The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules. Wiley. ISBN   0-471-49028-8. Chapter 7, Vibrational Resonance Raman Scattering
  18. Harris & Berolucci, p. 198
  19. Softley, T.P. (1994). Atomic Spectra. Oxford, UK: Oxford University Press. ISBN   0-19-855688-8.
  20. Condon, E.V.; Shortley, G.H. (1953). The Theory of Atomic Spectra. Cambridge University Press. ISBN   0-521-09209-4.

Related Research Articles

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. It has become vital in the building of the Standard Model.

Circular dichroism (CD) is dichroism involving circularly polarized light, i.e., the differential absorption of left- and right-handed light. Left-hand circular (LHC) and right-hand circular (RHC) polarized light represent two possible spin angular momentum states for a photon, and so circular dichroism is also referred to as dichroism for spin angular momentum. This phenomenon was discovered by Jean-Baptiste Biot, Augustin Fresnel, and Aimé Cotton in the first half of the 19th century. Circular dichroism and circular birefringence are manifestations of optical activity. It is exhibited in the absorption bands of optically active chiral molecules. CD spectroscopy has a wide range of applications in many different fields. Most notably, UV CD is used to investigate the secondary structure of proteins. UV/Vis CD is used to investigate charge-transfer transitions. Near-infrared CD is used to investigate geometric and electronic structure by probing metal d→d transitions. Vibrational circular dichroism, which uses light from the infrared energy region, is used for structural studies of small organic molecules, and most recently proteins and DNA.

Rotational–vibrational spectroscopy is a branch of molecular spectroscopy that is concerned with infrared and Raman spectra of molecules in the gas phase. Transitions involving changes in both vibrational and rotational states can be abbreviated as rovibrational transitions. When such transitions emit or absorb photons, the frequency is proportional to the difference in energy levels and can be detected by certain kinds of spectroscopy. Since changes in rotational energy levels are typically much smaller than changes in vibrational energy levels, changes in rotational state are said to give fine structure to the vibrational spectrum. For a given vibrational transition, the same theoretical treatment as for pure rotational spectroscopy gives the rotational quantum numbers, energy levels, and selection rules. In linear and spherical top molecules, rotational lines are found as simple progressions at both higher and lower frequencies relative to the pure vibration frequency. In symmetric top molecules the transitions are classified as parallel when the dipole moment change is parallel to the principal axis of rotation, and perpendicular when the change is perpendicular to that axis. The ro-vibrational spectrum of the asymmetric rotor water is important because of the presence of water vapor in the atmosphere.

<span class="mw-page-title-main">Rotational spectroscopy</span> Spectroscopy of quantized rotational states of gases

Rotational spectroscopy is concerned with the measurement of the energies of transitions between quantized rotational states of molecules in the gas phase. The rotational spectrum of polar molecules can be measured in absorption or emission by microwave spectroscopy or by far infrared spectroscopy. The rotational spectra of non-polar molecules cannot be observed by those methods, but can be observed and measured by Raman spectroscopy. Rotational spectroscopy is sometimes referred to as pure rotational spectroscopy to distinguish it from rotational-vibrational spectroscopy where changes in rotational energy occur together with changes in vibrational energy, and also from ro-vibronic spectroscopy where rotational, vibrational and electronic energy changes occur simultaneously.

<span class="mw-page-title-main">Magnetic moment</span> Magnetic strength and orientation of an object that produces a magnetic field

In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude of torque the object experiences in a given magnetic field. When the same magnetic field is applied, objects with larger magnetic moments experience larger torques. The strength of this torque depends not only on the magnitude of the magnetic moment but also on its orientation relative to the direction of the magnetic field. Its direction points from the south pole to north pole of the magnet.

In atomic physics, a magnetic quantum number is a quantum number used to distinguish quantum states of an electron or other particle according to its angular momentum along a given axis in space. The orbital magnetic quantum number distinguishes the orbitals available within a given subshell of an atom. It specifies the component of the orbital angular momentum that lies along a given axis, conventionally called the z-axis, so it describes the orientation of the orbital in space. The spin magnetic quantum numberms specifies the z-axis component of the spin angular momentum for a particle having spin quantum number s. For an electron, s is 12, and ms is either +12 or −12, often called "spin-up" and "spin-down", or α and β. The term magnetic in the name refers to the magnetic dipole moment associated with each type of angular momentum, so states having different magnetic quantum numbers shift in energy in a magnetic field according to the Zeeman effect.

<span class="mw-page-title-main">Stark effect</span> Spectral line splitting in electrical field

The Stark effect is the shifting and splitting of spectral lines of atoms and molecules due to the presence of an external electric field. It is the electric-field analogue of the Zeeman effect, where a spectral line is split into several components due to the presence of the magnetic field. Although initially coined for the static case, it is also used in the wider context to describe the effect of time-dependent electric fields. In particular, the Stark effect is responsible for the pressure broadening of spectral lines by charged particles in plasmas. For most spectral lines, the Stark effect is either linear or quadratic with a high accuracy.

<span class="mw-page-title-main">Raman scattering</span> Inelastic scattering of photons by matter

In chemistry and physics, Raman scattering or the Raman effect is the inelastic scattering of photons by matter, meaning that there is both an exchange of energy and a change in the light's direction. Typically this effect involves vibrational energy being gained by a molecule as incident photons from a visible laser are shifted to lower energy. This is called normal Stokes-Raman scattering.

In quantum mechanics, a rotational transition is an abrupt change in angular momentum. Like all other properties of a quantum particle, angular momentum is quantized, meaning it can only equal certain discrete values, which correspond to different rotational energy states. When a particle loses angular momentum, it is said to have transitioned to a lower rotational energy state. Likewise, when a particle gains angular momentum, a positive rotational transition is said to have occurred.

In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.

A multipole expansion is a mathematical series representing a function that depends on angles—usually the two angles used in the spherical coordinate system for three-dimensional Euclidean space, . Similarly to Taylor series, multipole expansions are useful because oftentimes only the first few terms are needed to provide a good approximation of the original function. The function being expanded may be real- or complex-valued and is defined either on , or less often on for some other .

<span class="mw-page-title-main">Franck–Condon principle</span> Quantum chemistry rule regarding vibronic transitions

The Franck-Condon Principle describes the intensities of vibronic transitions, or the absorption or emission of a photon. It states that when a molecule is undergoing an electronic transition, such as ionization, the nuclear configuration of the molecule experiences no significant change.

In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment is −9.2847646917(29)×10−24 J⋅T−1. In units of the Bohr magneton (μB), it is −1.00115965218059(13) μB, a value that was measured with a relative accuracy of 1.3×10−13.

In molecular physics, the molecular term symbol is a shorthand expression of the group representation and angular momenta that characterize the state of a molecule, i.e. its electronic quantum state which is an eigenstate of the electronic molecular Hamiltonian. It is the equivalent of the term symbol for the atomic case. However, the following presentation is restricted to the case of homonuclear diatomic molecules, or other symmetric molecules with an inversion centre. For heteronuclear diatomic molecules, the u/g symbol does not correspond to any exact symmetry of the electronic molecular Hamiltonian. In the case of less symmetric molecules the molecular term symbol contains the symbol of the group representation to which the molecular electronic state belongs.

In quantum chemistry, a configuration state function (CSF), is a symmetry-adapted linear combination of Slater determinants. A CSF must not be confused with a configuration. In general, one configuration gives rise to several CSFs; all have the same total quantum numbers for spin and spatial parts but differ in their intermediate couplings.

A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 1013 Hz to approximately 1014 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm−1 and wavelengths of approximately 30 to 3 μm.

In rotational-vibrational and electronic spectroscopy of diatomic molecules, Hund's coupling cases are idealized descriptions of rotational states in which specific terms in the molecular Hamiltonian and involving couplings between angular momenta are assumed to dominate over all other terms. There are five cases, proposed by Friedrich Hund in 1926-27 and traditionally denoted by the letters (a) through (e). Most diatomic molecules are somewhere between the idealized cases (a) and (b).

The quantum cylindrical quadrupole is a solution to the Schrödinger equation, where is the reduced Planck constant, is the mass of the particle, is the imaginary unit and is time.

Molecular symmetry in physics and chemistry describes the symmetry present in molecules and the classification of molecules according to their symmetry. Molecular symmetry is a fundamental concept in the application of Quantum Mechanics in physics and chemistry, for example it can be used to predict or explain many of a molecule's properties, such as its dipole moment and its allowed spectroscopic transitions, without doing the exact rigorous calculations. To do this it is necessary to classify the states of the molecule using the irreducible representations from the character table of the symmetry group of the molecule. Among all the molecular symmetries, diatomic molecules show some distinct features and they are relatively easier to analyze.

Stimulated Raman spectroscopy, also referred to as stimulated Raman scattering (SRS), is a form of spectroscopy employed in physics, chemistry, biology, and other fields. The basic mechanism resembles that of spontaneous Raman spectroscopy: a pump photon, of the angular frequency , which is scattered by a molecule has some small probability of inducing some vibrational transition, as opposed to inducing a simple Rayleigh transition. This makes the molecule emit a photon at a shifted frequency. However, SRS, as opposed to spontaneous Raman spectroscopy, is a third-order non-linear phenomenon involving a second photon—the Stokes photon of angular frequency —which stimulates a specific transition. When the difference in frequency between both photons resembles that of a specific vibrational transition the occurrence of this transition is resonantly enhanced. In SRS, the signal is equivalent to changes in the intensity of the pump and Stokes beams. The signals are typically rather low, of the order of a part in 10^5, thus calling for modulation-transfer techniques: one beam is modulated in amplitude, and the signal is detected on the other beam via a lock-in amplifier. Employing a pump laser beam of a constant frequency and a Stokes laser beam of a scanned frequency allows for unraveling the molecule's spectral fingerprint. This spectral fingerprint differs from those obtained by other spectroscopy methods, such as Rayleigh scattering, as the Raman transitions confer different exclusion rules than those that apply to Rayleigh transitions.

References

Harris, D.C.; Bertolucci, M.D. (1978). Symmetry and Spectroscopy. Oxford University Press. ISBN   0-19-855152-5.
Cotton, F.A. (1990). Chemical Applications of Group Theory (3rd ed.). Wiley. ISBN   978-0-471-51094-9.

Further reading