Allotropes of oxygen

Last updated

There are several known allotropes of oxygen . The most familiar is molecular oxygen (O2), present at significant levels in Earth's atmosphere and also known as dioxygen or triplet oxygen. Another is the highly reactive ozone (O3). Others are:

Contents

Atomic oxygen

Atomic oxygen, denoted O or O1, is very reactive, as the individual atoms of oxygen tend to quickly bond with nearby molecules. Its lowest-energy electronic state is a spin triplet, designated by the term symbol 3P. On Earth's surface, it exists naturally for a very short time. In outer space, the presence of ample ultraviolet radiation results in a low Earth orbit atmosphere in which 96% of the oxygen occurs in atomic form. [1]

Atomic oxygen has been detected on Mars by Mariner, Viking, and the SOFIA observatory. [2]

Dioxygen

The most commonly encountered allotrope of elemental oxygen is triplet dioxygen, a diradical. The unpaired electrons participate in three-electron bonding, shown here using dashed lines. Triplett-Sauerstoff.svg
The most commonly encountered allotrope of elemental oxygen is triplet dioxygen, a diradical. The unpaired electrons participate in three-electron bonding, shown here using dashed lines.

The common allotrope of elemental oxygen on Earth, O2, is generally known as oxygen, but may be called dioxygen, diatomic oxygen, molecular oxygen, dioxidene or oxygen gas to distinguish it from the element itself and from the triatomic allotrope ozone,O3. As a major component (about 21% by volume) of Earth's atmosphere, elemental oxygen is most commonly encountered in the diatomic form. Aerobic organisms use atmospheric dioxygen as the terminal oxidant in cellular respiration in order to obtain chemical energy. The ground state of dioxygen is known as triplet oxygen, 3[O2], because it has two unpaired electrons. The first excited state, singlet oxygen, 1[O2], has no unpaired electrons and is metastable. The doublet state requires an odd number of electrons, and so cannot occur in dioxygen without gaining or losing electrons, such as in the superoxide ion (O2) or the dioxygenyl ion (O+2).

The ground state of O2 has a bond length of 121  pm and a bond energy of 498 kJ/mol. [3] It is a colourless gas with a boiling point of −183 °C (90 K; −297 °F). [4] It can be condensed from air by cooling with liquid nitrogen, which has a boiling point of −196 °C (77 K; −321 °F). Liquid oxygen is pale blue in colour, and is quite markedly paramagnetic due to the unpaired electrons; liquid oxygen contained in a flask suspended by a string is attracted to a magnet.

Singlet oxygen

Singlet oxygen is the common name used for the two metastable states of molecular oxygen (O2) with higher energy than the ground state triplet oxygen. Because of the differences in their electron shells, singlet oxygen has different chemical and physical properties than triplet oxygen, including absorbing and emitting light at different wavelengths. It can be generated in a photosensitized process by energy transfer from dye molecules such as rose bengal, methylene blue or porphyrins, or by chemical processes such as spontaneous decomposition of hydrogen trioxide in water or the reaction of hydrogen peroxide with hypochlorite.

Ozone

Triatomic oxygen (ozone, O3) is a very reactive allotrope of oxygen that is a pale blue gas at standard temperature and pressure. Liquid and solid O3 have a deeper blue color than ordinary O2, and they are unstable and explosive. [5] [6] In its gas phase, ozone is destructive to materials like rubber and fabric and is damaging to lung tissue. [7] Traces of it can be detected as a pungent, chlorine-like smell, [4] coming from electric motors, laser printers, and photocopiers, as it is formed whenever air is subjected to an electrical discharge. It was named "ozon" in 1840 by Christian Friedrich Schönbein, [8] from ancient Greek ὄζειν (ozein: "to smell") plus the suffix -on, commonly used at the time to designate a derived compound and anglicized as -one. [9]

Ozone is thermodynamically unstable and tends to react toward the more common dioxygen form. It is formed by reaction of intact O2 with atomic oxygen produced when UV radiation in the upper atmosphere splits O2. [5] Ozone absorbs strongly in the ultraviolet and in the stratosphere functions as a shield for the biosphere against mutagenic and other damaging effects of solar UV radiation (see ozone layer). [5] Tropospheric ozone is formed near the Earth's surface by the photochemical disintegration of nitrogen dioxide in the exhaust of automobiles. [10] Ground-level ozone is an air pollutant that is especially harmful for senior citizens, children, and people with heart and lung conditions such as emphysema, bronchitis, and asthma. [11] The immune system produces ozone as an antimicrobial (see below). [12]

Cyclic ozone

Cyclic ozone is a theoretically predicted O3 molecule in which its three atoms of oxygen bond in an equilateral triangle instead of an open angle.

Tetraoxygen

Tetraoxygen had been suspected to exist since the early 1900s, when it was known as oxozone. It was identified in 2001 by a team led by Fulvio Cacace at the University of Rome. [13] The molecule O4 was thought to be in one of the phases of solid oxygen later identified as O8. Cacace's team suggested that O4 probably consists of two dumbbell-like O2 molecules loosely held together by induced dipole dispersion forces.

Phases of solid oxygen

There are six known distinct phases of solid oxygen. One of them is a dark-red O8 cluster. When oxygen is subjected to a pressure of 96 GPa, it becomes metallic, in a similar manner to hydrogen, [14] and becomes more similar to the heavier chalcogens, such as selenium (exhibiting a pink-red color in its elemental state), tellurium and polonium, both of which show significant metallic character. At very low temperatures, this phase also becomes superconducting.

Related Research Articles

<span class="mw-page-title-main">Chalcogen</span> Group of chemical elements

The chalcogens are the chemical elements in group 16 of the periodic table. This group is also known as the oxygen family. Group 16 consists of the elements oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and the radioactive elements polonium (Po) and livermorium (Lv). Often, oxygen is treated separately from the other chalcogens, sometimes even excluded from the scope of the term "chalcogen" altogether, due to its very different chemical behavior from sulfur, selenium, tellurium, and polonium. The word "chalcogen" is derived from a combination of the Greek word khalkόs (χαλκός) principally meaning copper, and the Latinized Greek word genēs, meaning born or produced.

<span class="mw-page-title-main">Oxygen</span> Chemical element, symbol O and atomic number 8

Oxygen is a chemical element; it has symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as well as with other compounds. Oxygen is the most abundant element in Earth's crust, and after hydrogen and helium, it is the third-most abundant element in the universe. At standard temperature and pressure, two atoms of the element bind to form dioxygen, a colorless and odorless diatomic gas with the formula O
2
. Diatomic oxygen gas currently constitutes 20.95% of the Earth's atmosphere, though this has changed considerably over long periods of time. Oxygen makes up almost half of the Earth's crust in the form of oxides.

Hund's rule of maximum multiplicity is a rule based on observation of atomic spectra, which is used to predict the ground state of an atom or molecule with one or more open electronic shells. The rule states that for a given electron configuration, the lowest energy term is the one with the greatest value of spin multiplicity. This implies that if two or more orbitals of equal energy are available, electrons will occupy them singly before filling them in pairs. The rule, discovered by Friedrich Hund in 1925, is of important use in atomic chemistry, spectroscopy, and quantum chemistry, and is often abbreviated to Hund's rule, ignoring Hund's other two rules.

<span class="mw-page-title-main">Intersystem crossing</span>

Intersystem crossing (ISC) is an isoenergetic radiationless process involving a transition between the two electronic states with different spin multiplicity.

<span class="mw-page-title-main">Ozone–oxygen cycle</span> Biogeochemical cycle

The ozone–oxygen cycle is the process by which ozone is continually regenerated in Earth's stratosphere, converting ultraviolet radiation (UV) into heat. In 1930 Sydney Chapman resolved the chemistry involved. The process is commonly called the Chapman cycle by atmospheric scientists.

<span class="mw-page-title-main">Sulfur monoxide</span> Chemical compound

Sulfur monoxide is an inorganic compound with formula SO. It is only found as a dilute gas phase. When concentrated or condensed, it converts to S2O2 (disulfur dioxide). It has been detected in space but is rarely encountered intact otherwise.

<span class="mw-page-title-main">Oxygen fluoride</span> Any binary compound of oxygen and fluorine

Oxygen fluorides are compounds of elements oxygen and fluorine with the general formula OnF2, where n = 1 to 6. Many different oxygen fluorides are known:

<span class="mw-page-title-main">Singlet oxygen</span> Oxygen with all of its electrons spin paired

Singlet oxygen, systematically named dioxygen(singlet) and dioxidene, is a gaseous inorganic chemical with the formula O=O (also written as 1
[O
2
]
or 1
O
2
), which is in a quantum state where all electrons are spin paired. It is kinetically unstable at ambient temperature, but the rate of decay is slow.

The tetraoxygen molecule (O4), also called oxozone, is an allotrope of oxygen consisting of four oxygen atoms.

<span class="mw-page-title-main">Triplet oxygen</span> Triplet state of the dioxygen molecule

Triplet oxygen, 3O2, refers to the S = 1 electronic ground state of molecular oxygen (dioxygen). Molecules of triplet oxygen contain two unpaired electrons, making triplet oxygen an unusual example of a stable and commonly encountered diradical: it is more stable as a triplet than a singlet. According to molecular orbital theory, the electron configuration of triplet oxygen has two electrons occupying two π molecular orbitals (MOs) of equal energy (that is, degenerate MOs). In accordance with Hund's rules, they remain unpaired and spin-parallel, which accounts for the paramagnetism of molecular oxygen. These half-filled orbitals are antibonding in character, reducing the overall bond order of the molecule to 2 from the maximum value of 3 that would occur when these antibonding orbitals remain fully unoccupied, as in dinitrogen. The molecular term symbol for triplet oxygen is 3Σ
g
.

Photodissociation, photolysis, photodecomposition, or photofragmentation is a chemical reaction in which molecules of a chemical compound are broken down by photons. It is defined as the interaction of one or more photons with one target molecule.

In chemistry, homonuclear molecules, or homonuclear species, are molecules composed of only one element. Homonuclear molecules may consist of various numbers of atoms. The size of the molecule an element can form depends on the element's properties, and some elements form molecules of more than one size. The most familiar homonuclear molecules are diatomic molecule, which consist of two atoms, although not all diatomic molecules are homonuclear. Homonuclear diatomic molecules include hydrogen, oxygen, nitrogen and all of the halogens. Ozone is a common triatomic homonuclear molecule. Homonuclear tetratomic molecules include arsenic and phosphorus.

A molecular orbital diagram, or MO diagram, is a qualitative descriptive tool explaining chemical bonding in molecules in terms of molecular orbital theory in general and the linear combination of atomic orbitals (LCAO) method in particular. A fundamental principle of these theories is that as atoms bond to form molecules, a certain number of atomic orbitals combine to form the same number of molecular orbitals, although the electrons involved may be redistributed among the orbitals. This tool is very well suited for simple diatomic molecules such as dihydrogen, dioxygen, and carbon monoxide but becomes more complex when discussing even comparatively simple polyatomic molecules, such as methane. MO diagrams can explain why some molecules exist and others do not. They can also predict bond strength, as well as the electronic transitions that can take place.

Oxygenevolution is the process of generating molecular oxygen (O2) by a chemical reaction, usually from water. Oxygen evolution from water is effected by oxygenic photosynthesis, electrolysis of water, and thermal decomposition of various oxides. The biological process supports aerobic life. When relatively pure oxygen is required industrially, it is isolated by distilling liquefied air.

In spectroscopy and quantum chemistry, the multiplicity of an energy level is defined as 2S+1, where S is the total spin angular momentum. States with multiplicity 1, 2, 3, 4, 5 are respectively called singlets, doublets, triplets, quartets and quintets.

Dioxygen plays an important role in the energy metabolism of living organisms. Free oxygen is produced in the biosphere through photolysis of water during photosynthesis in cyanobacteria, green algae, and plants. During oxidative phosphorylation in cellular respiration, oxygen is reduced to water, thus closing the biological water-oxygen redox cycle.

An electric effect influences the structure, reactivity, or properties of a molecule but is neither a traditional bond nor a steric effect. In organic chemistry, the term stereoelectronic effect is also used to emphasize the relation between the electronic structure and the geometry (stereochemistry) of a molecule.

<span class="mw-page-title-main">Disulfur</span> Chemical compound

Disulfur is the diatomic molecule with the formula S2. It is analogous to the dioxygen molecule but rarely occurs at room temperature. This violet gas is the dominant species in hot sulfur vapors. S2 is one of the minor components of the atmosphere of Io, which is predominantly composed of SO2. The instability of S2 is usually described in the context of the double bond rule.

<span class="mw-page-title-main">Radical (chemistry)</span> Atom, molecule, or ion that has an unpaired valence electron; typically highly reactive

In chemistry, a radical, also known as a free radical, is an atom, molecule, or ion that has at least one unpaired valence electron. With some exceptions, these unpaired electrons make radicals highly chemically reactive. Many radicals spontaneously dimerize. Most organic radicals have short lifetimes.

Dioxygen complexes are coordination compounds that contain O2 as a ligand. The study of these compounds is inspired by oxygen-carrying proteins such as myoglobin, hemoglobin, hemerythrin, and hemocyanin. Several transition metals form complexes with O2, and many of these complexes form reversibly. The binding of O2 is the first step in many important phenomena, such as cellular respiration, corrosion, and industrial chemistry. The first synthetic oxygen complex was demonstrated in 1938 with cobalt(II) complex reversibly bound O2.

References

  1. "Out of Thin Air" Archived 2017-06-23 at the Wayback Machine .NASA.gov. February 17, 2011.
  2. Bell, Kassandra (6 May 2016). "Flying observatory detects atomic oxygen in Martian Atmosphere". NASA . Archived from the original on 8 November 2020. Retrieved 30 September 2021.
  3. Chieh, Chung. "Bond Lengths and Energies". University of Waterloo. Archived from the original on 14 December 2007. Retrieved 16 December 2007.
  4. 1 2 Chemistry Tutorial : Allotropes Archived 2021-11-17 at the Wayback Machine from AUS-e-TUTE.com.au
  5. 1 2 3 Mellor 1939
  6. Cotton, F. Albert and Wilkinson, Geoffrey (1972). Advanced Inorganic Chemistry: A comprehensive Text. (3rd Edition). New York, London, Sydney, Toronto: Interscience Publications. ISBN   0-471-17560-9.
  7. Stwertka 1998, p.48
  8. Christian Friedrich Schönbein, Über die Erzeugung des Ozons auf chemischen Wege Archived 2020-06-30 at the Wayback Machine , p. 3, Basel: Schweighauser'sche Buchhandlung, 1844.
  9. "Ozone", Oxford English Dictionary online, retrieved 29 June 2020.
  10. Stwertka 1998, p.49
  11. "Who is most at risk from ozone?". airnow.gov. Archived from the original on 17 January 2008. Retrieved 2008-01-06.
  12. Paul Wentworth Jr.; Jonathan E. McDunn; Anita D. Wentworth; Cindy Takeuchi; Jorge Nieva; Teresa Jones; Cristina Bautista; Julie M. Ruedi; Abel Gutierrez; Kim D. Janda; Bernard M. Babior; Albert Eschenmoser; Richard A. Lerner (2002-12-13). "Evidence for Antibody-Catalyzed Ozone Formation in Bacterial Killing and Inflammation". Science. 298 (5601): 2195–2199. Bibcode:2002Sci...298.2195W. doi: 10.1126/science.1077642 . PMID   12434011. S2CID   36537588.
  13. Cacace, Fulvio (2001). "Experimental Detection of Tetraoxygen". Angewandte Chemie International Edition. 40 (21): 4062–4065. doi:10.1002/1521-3773(20011105)40:21<4062::AID-ANIE4062>3.0.CO;2-X. PMID   12404493.
  14. Peter P. Edwards; Friedrich Hensel (2002-01-14). "Metallic Oxygen". ChemPhysChem. 3 (1): 53–56. doi:10.1002/1439-7641(20020118)3:1<53::AID-CPHC53>3.0.CO;2-2. PMID   12465476.

Further reading