Flux pinning

Last updated
Flux Pinning: Flux Tube diagram Flux Pinning Field Diagram.jpg
Flux Pinning: Flux Tube diagram

Flux pinning is a phenomenon that occurs when flux vortices in a type-II superconductor are prevented from moving within the bulk of the superconductor, so that the magnetic field lines are "pinned" to those locations. [1] The superconductor must be a type-II superconductor because type-I superconductors cannot be penetrated by magnetic fields. [2] Some type-I superconductors can experience the effects of flux pinning if they are thin enough. If the material's thickness is comparable to the London penetration depth, the magnetic field can pass through the material. The act of magnetic penetration is what makes flux pinning possible. At higher magnetic fields (above lower critical field Hc,1 but below upper critical field Hc,2 ) the superconductor allows magnetic flux to enter in quantized packets surrounded by a superconducting current vortex (see Quantum vortex). These sites of penetration are known as flux tubes. The number of flux tubes per unit area is proportional to the magnetic field with a constant of proportionality equal to the magnetic flux quantum. On a simple 76 millimeter diameter, 1-micrometer thick disk, next to a magnetic field of 28 kA/m, there are approximately 100 billion flux tubes that hold 70,000 times the superconductor's weight. At lower temperatures the flux tubes are pinned in place and cannot move. This pinning is what holds the superconductor in place thereby allowing it to levitate. This phenomenon is closely related to the Meissner effect, though with one crucial difference — the Meissner effect shields the superconductor from all magnetic fields causing repulsion, unlike the pinned state of the superconductor disk which pins flux, and the superconductor in place.

Contents

Importance

Flux pinning is desirable in high-temperature ceramic superconductors to prevent "flux creep", which can create a pseudo-resistance and depress both critical current density and critical field.

Degradation of a high-temperature superconductor's properties due to flux creep is a limiting factor in the use of these superconductors. SQUID magnetometers suffer reduced precision in a certain range of applied field due to flux creep in the superconducting magnet used to bias the sample, and the maximum field strength of high-temperature superconducting magnets is drastically reduced by the depression in critical field.

Potential applications

The worth of flux pinning is seen through many implementations such as lifts, frictionless joints, and transportation. The thinner the superconducting layer, the stronger the pinning that occurs when exposed to magnetic fields. Since the superconductor is pinned above the magnet away from any surfaces, there is the potential for a frictionless joint. Transportation is another area in which flux pinning technology could revolutionize and reform. MagSurf was developed by the Paris Diderot University utilizing flux pinning to create a hoverboard-like effect that could transport a person, demonstrating the usefulness of the technology. [3] [4] The Federal University of Rio de Janeiro has also been developing a flux pinning-based MagLev system called Maglev Cobra, which aims for a smaller form factor than existing urban rail systems. There has also been some research into using the flux pinning effect to isolate vibrations for microdevices. The ability to fix the superconductor in space can be used as a damping device like a spring. This idea has proposed for isolating vibrations for parts in satellites.

See also

Related Research Articles

<span class="mw-page-title-main">Superconductivity</span> Electrical conductivity with exactly zero resistance

Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike an ordinary metallic conductor, whose resistance decreases gradually as its temperature is lowered, even down to near absolute zero, a superconductor has a characteristic critical temperature below which the resistance drops abruptly to zero. An electric current through a loop of superconducting wire can persist indefinitely with no power source.

<span class="mw-page-title-main">Meissner effect</span> Expulsion of a magnetic field from a superconductor

The Meissner effect is the expulsion of a magnetic field from a superconductor during its transition to the superconducting state when it is cooled below the critical temperature. This expulsion will repel a nearby magnet.

The magnetic flux, represented by the symbol Φ, threading some contour or loop is defined as the magnetic field B multiplied by the loop area S, i.e. Φ = BS. Both B and S can be arbitrary, meaning Φ can be as well. However, if one deals with the superconducting loop or a hole in a bulk superconductor, the magnetic flux threading such a hole/loop is quantized. The (superconducting) magnetic flux quantumΦ0 = h/(2e)2.067833848...×10−15 Wb is a combination of fundamental physical constants: the Planck constant h and the electron charge e. Its value is, therefore, the same for any superconductor. The phenomenon of flux quantization was discovered experimentally by B. S. Deaver and W. M. Fairbank and, independently, by R. Doll and M. Näbauer, in 1961. The quantization of magnetic flux is closely related to the Little–Parks effect, but was predicted earlier by Fritz London in 1948 using a phenomenological model.

<span class="mw-page-title-main">Magnesium diboride</span> Chemical compound

Magnesium diboride is the inorganic compound with the formula MgB2. It is a dark gray, water-insoluble solid. The compound has attracted attention because it becomes superconducting at 39 K (−234 °C). In terms of its composition, MgB2 differs strikingly from most low-temperature superconductors, which feature mainly transition metals. Its superconducting mechanism is primarily described by BCS theory.

<span class="mw-page-title-main">Superconducting magnet</span> Electromagnet made from coils of superconducting wire

A superconducting magnet is an electromagnet made from coils of superconducting wire. They must be cooled to cryogenic temperatures during operation. In its superconducting state the wire has no electrical resistance and therefore can conduct much larger electric currents than ordinary wire, creating intense magnetic fields. Superconducting magnets can produce stronger magnetic fields than all but the strongest non-superconducting electromagnets, and large superconducting magnets can be cheaper to operate because no energy is dissipated as heat in the windings. They are used in MRI instruments in hospitals, and in scientific equipment such as NMR spectrometers, mass spectrometers, fusion reactors and particle accelerators. They are also used for levitation, guidance and propulsion in a magnetic levitation (maglev) railway system being constructed in Japan.

<span class="mw-page-title-main">Eddy current</span> Loops of electric current induced within conductors by a changing magnetic field

In electromagnetism, eddy currents are loops of electric current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction or by the relative motion of a conductor in a magnetic field. Eddy currents flow in closed loops within conductors, in planes perpendicular to the magnetic field. They can be induced within nearby stationary conductors by a time-varying magnetic field created by an AC electromagnet or transformer, for example, or by relative motion between a magnet and a nearby conductor. The magnitude of the current in a given loop is proportional to the strength of the magnetic field, the area of the loop, and the rate of change of flux, and inversely proportional to the resistivity of the material. When graphed, these circular currents within a piece of metal look vaguely like eddies or whirlpools in a liquid.

<span class="mw-page-title-main">History of superconductivity</span>

Superconductivity is the phenomenon of certain materials exhibiting zero electrical resistance and the expulsion of magnetic fields below a characteristic temperature. The history of superconductivity began with Dutch physicist Heike Kamerlingh Onnes's discovery of superconductivity in mercury in 1911. Since then, many other superconducting materials have been discovered and the theory of superconductivity has been developed. These subjects remain active areas of study in the field of condensed matter physics.

<span class="mw-page-title-main">Superdiamagnetism</span>

Superdiamagnetism is a phenomenon occurring in certain materials at low temperatures, characterised by the complete absence of magnetic permeability and the exclusion of the interior magnetic field.

<span class="mw-page-title-main">Abrikosov vortex</span>

In superconductivity, fluxon is a vortex of supercurrent in a type-II superconductor, used by Alexei Abrikosov to explain magnetic behavior of type-II superconductors. Abrikosov vortices occur generically in the Ginzburg–Landau theory of superconductivity.

<span class="mw-page-title-main">Type-II superconductor</span> Superconductor characterized by the formation of magnetic vortices in an applied magnetic field

In superconductivity, a type-II superconductor is a superconductor that exhibits an intermediate phase of mixed ordinary and superconducting properties at intermediate temperature and fields above the superconducting phases. It also features the formation of magnetic field vortices with an applied external magnetic field. This occurs above a certain critical field strength Hc1. The vortex density increases with increasing field strength. At a higher critical field Hc2, superconductivity is destroyed. Type-II superconductors do not exhibit a complete Meissner effect.

<span class="mw-page-title-main">Type-I superconductor</span> Type of superconductor with a single critical magnetic field

The interior of a bulk superconductor cannot be penetrated by a weak magnetic field, a phenomenon known as the Meissner effect. When the applied magnetic field becomes too large, superconductivity breaks down. Superconductors can be divided into two types according to how this breakdown occurs. In type-I superconductors, superconductivity is abruptly destroyed via a first order phase transition when the strength of the applied field rises above a critical value Hc. This type of superconductivity is normally exhibited by pure metals, e.g. aluminium, lead, and mercury. The only alloy known up to now which exhibits type I superconductivity is tantalum silicide (TaSi2). The covalent superconductor SiC:B, silicon carbide heavily doped with boron, is also type-I.

<span class="mw-page-title-main">Quantum vortex</span> Quantized flux circulation of some physical quantity

In physics, a quantum vortex represents a quantized flux circulation of some physical quantity. In most cases, quantum vortices are a type of topological defect exhibited in superfluids and superconductors. The existence of quantum vortices was first predicted by Lars Onsager in 1949 in connection with superfluid helium. Onsager reasoned that quantisation of vorticity is a direct consequence of the existence of a superfluid order parameter as a spatially continuous wavefunction. Onsager also pointed out that quantum vortices describe the circulation of superfluid and conjectured that their excitations are responsible for superfluid phase transitions. These ideas of Onsager were further developed by Richard Feynman in 1955 and in 1957 were applied to describe the magnetic phase diagram of type-II superconductors by Alexei Alexeyevich Abrikosov. In 1935 Fritz London published a very closely related work on magnetic flux quantization in superconductors. London's fluxoid can also be viewed as a quantum vortex.

<span class="mw-page-title-main">Proximity effect (superconductivity)</span> Phenomena that occur when a superconductor is in contact with a non-superconductor

Proximity effect or Holm–Meissner effect is a term used in the field of superconductivity to describe phenomena that occur when a superconductor (S) is placed in contact with a "normal" (N) non-superconductor. Typically the critical temperature of the superconductor is suppressed and signs of weak superconductivity are observed in the normal material over mesoscopic distances. The proximity effect is known since the pioneering work by R. Holm and W. Meissner. They have observed zero resistance in SNS pressed contacts, in which two superconducting metals are separated by a thin film of a non-superconducting metal. The discovery of the supercurrent in SNS contacts is sometimes mistakenly attributed to Brian Josephson's 1962 work, yet the effect was known long before his publication and was understood as the proximity effect.

For a given temperature, the critical field refers to the maximum magnetic field strength below which a material remains superconducting. Superconductivity is characterized both by perfect conductivity and by the complete expulsion of magnetic fields. Changes in either temperature or magnetic flux density can cause the phase transition between normal and superconducting states. The highest temperature under which the superconducting state is seen is known as the critical temperature. At that temperature even the weakest external magnetic field will destroy the superconducting state, so the strength of the critical field is zero. As temperature decreases, the critical field increases generally to a maximum at absolute zero.

<span class="mw-page-title-main">Scanning SQUID microscopy</span> Method of imaging magnetic fields at microscopic scales

In condensed matter physics, scanning SQUID microscopy is a technique where a superconducting quantum interference device (SQUID) is used to image surface magnetic field strength with micrometre-scale resolution. A tiny SQUID is mounted onto a tip which is then rastered near the surface of the sample to be measured. As the SQUID is the most sensitive detector of magnetic fields available and can be constructed at submicrometre widths via lithography, the scanning SQUID microscope allows magnetic fields to be measured with unparalleled resolution and sensitivity. The first scanning SQUID microscope was built in 1992 by Black et al. Since then the technique has been used to confirm unconventional superconductivity in several high-temperature superconductors including YBCO and BSCCO compounds.

Type-1.5 superconductors are multicomponent superconductors characterized by two or more coherence lengths, at least one of which is shorter than the magnetic field penetration length , and at least one of which is longer. This is in contrast to single-component superconductors, where there is only one coherence length and the superconductor is necessarily either type 1 or type 2. When placed in magnetic field, type-1.5 superconductors should form quantum vortices: magnetic-flux-carrying excitations. They allow magnetic field to pass through superconductors due to a vortex-like circulation of superconducting particles. In type-1.5 superconductors these vortices have long-range attractive, short-range repulsive interaction. As a consequence a type-1.5 superconductor in a magnetic field can form a phase separation into domains with expelled magnetic field and clusters of quantum vortices which are bound together by attractive intervortex forces. The domains of the Meissner state retain the two-component superconductivity, while in the vortex clusters one of the superconducting components is suppressed. Thus such materials should allow coexistence of various properties of type-I and type-II superconductors.

Flux pumping is a method for magnetising superconductors to fields in excess of 15 teslas. The method can be applied to any type II superconductor and exploits a fundamental property of superconductors, namely their ability to support and maintain currents on the length scale of the superconductor. Conventional magnetic materials are magnetised on a molecular scale which means that superconductors can maintain a flux density orders of magnitude bigger than conventional materials. Flux pumping is especially significant when one bears in mind that all other methods of magnetising superconductors require application of a magnetic flux density at least as high as the final required field. This is not true of flux pumping.

<span class="mw-page-title-main">Magnetic levitation</span> Suspension of objects by magnetic force.

Magnetic levitation (maglev) or magnetic suspension is a method by which an object is suspended with no support other than magnetic fields. Magnetic force is used to counteract the effects of the gravitational force and any other forces.

<span class="mw-page-title-main">Frozen mirror image method</span>

Frozen mirror image method is an extension of the method of images for magnet-superconductor systems that has been introduced by Alexander Kordyuk in 1998 to take into account the magnetic flux pinning phenomenon. The method gives a simple representation of the magnetic field distribution generated by a magnet outside an infinitely flat surface of a perfectly hard type-II superconductor in more general field cooled (FC) case, i.e. when the superconductor goes into superconducting state been already exposed to the magnetic field. The difference from the mirror image method, which deals with a perfect type-I superconductor, is that the perfectly hard superconductor screens the variation of the external magnetic field rather than the field itself.

Macroscopic quantum phenomena are processes showing quantum behavior at the macroscopic scale, rather than at the atomic scale where quantum effects are prevalent. The best-known examples of macroscopic quantum phenomena are superfluidity and superconductivity; other examples include the quantum Hall effect and topological order. Since 2000 there has been extensive experimental work on quantum gases, particularly Bose–Einstein condensates.

References

  1. "Flux pinning in action". Physics World. 21 October 2011. Retrieved 15 February 2022.
  2. Rosen, J., Ph.D., & Quinn, L. (n.d.). Superconductivity. In K. Cullen, Ph.D. (Ed.), Encyclopedia of physical science. Retrieved from Science Online database.
  3. Le Mag Surf (Universite Paris-Diderot) - published 6 October 2011: http://www.univ-paris-diderot.fr/sc/site.php?bc=recherche&np=pageActu&ref=3658
  4. PBS news 30 October 2013: http://www.mpq.univ-paris-diderot.fr/spip.php?article1709

Other sources