Topological defect

Last updated

In mathematics and physics, solitons, topological solitons and topological defects are three closely related ideas, all of which signify structures in a physical system that are stable against perturbations. Solitons won't decay, dissipate, disperse or evaporate in the way that ordinary waves (or solutions or structures) might. The stability arises from an obstruction to the decay, which is explained by having the soliton belong to a different topological homotopy class or cohomology class than the base physical system. More simply: it is not possible to continuously transform the system with a soliton in it, to one without it. The mathematics behind topological stability is both deep and broad, and a vast variety of systems possessing topological stability have been described. This makes categorization somewhat difficult.

Contents

Overview

The original soliton was observed in the 19th century, as a solitary water wave in a barge canal. It was eventually explained by noting that the Korteweg-De Vries (KdV) equation, describing waves in water, has homotopically distinct solutions. The mechanism of Lax pairs provided the needed topological understanding.

The general characteristic needed for a topological soliton to arise is that there should be some partial differential equation (PDE) having distinct classes of solutions, with each solution class belonging to a distinct homotopy class. In many cases, this arises because the base space -- 3D space, or 4D spacetime, can be thought of as having the topology of a sphere, obtained by one-point compactification: adding a point at infinity. This is reasonable, as one is generally interested in solutions that vanish at infinity, and so are single-valued at that point. The range (codomain) of the variables in the differential equation can also be viewed as living in some compact topological space. As a result, the mapping from space(time) to the variables in the PDE is describable as a mapping from a sphere to a (different) sphere; the classes of such mappings are given by the homotopy groups of spheres.

To restate more plainly: solitons are found when one solution of the PDE cannot be continuously transformed into another; to get from one to the other would require "cutting" (as with scissors), but "cutting" is not a defined operation for solving PDE's. The cutting analogy arises because some solitons are described as mappings , where is the circle; the mappings arise in the circle bundle. Such maps can be thought of as winding a string around a stick: the string cannot be removed without cutting it. The most common extension of this winding analogy is to maps , where the first three-sphere stands for compactified 3D space, while the second stands for a vector field. (A three-vector, its direction plus length, can be thought of as specifying a point on a 3-sphere. The orientation of the vector specifies a subgroup of the orthogonal group ; the length fixes a point. This has a double covering by the unitary group , and .) Such maps occur in PDE's describing vector fields.

A topological defect is perhaps the simplest way of understanding the general idea: it is a soliton that occurs in a crystalline lattice, typically studied in the context of solid state physics and materials science. The prototypical example is the screw dislocation; it is a dislocation of the lattice that spirals around. It can be moved from one location to another by pushing it around, but it cannot be removed by simple continuous deformations of the lattice. (Some screw dislocations manifest so that they are directly visible to the naked eye: these are the germanium whiskers.) The mathematical stability comes from the non-zero winding number of the map of circles the stability of the dislocation leads to stiffness in the material containing it. One common manifestation is the repeated bending of a metal wire: this introduces more and more screw dislocations (as dislocation-anti-dislocation pairs), making the bent region increasingly stiff and brittle. Continuing to stress that region will overwhelm it with dislocations, and eventually lead to a fracture and failure of the material. This can be thought of as a phase transition, where the number of defects exceeds a critical density, allowing them to interact with one-another and "connect up", and thus disconnect (fracture) the whole. The idea that critical densities of solitons can lead to phase transitions is a recurring theme.

Vorticies in superfluids and pinned vortex tubes in type-II superconductors provide examples of circle-map type topological solitons in fluids. More abstract examples include cosmic strings; these include both vortex-like solutions to the Einstein field equations, and vortex-like solutions in more complex systems, coupling to matter and wave fields. Tornados and vorticies in air are not examples of solitons: there is no obstruction to their decay; they will dissipate after a time. The mathematical solution describing a tornado can be continuously transformed, by weakening the rotation, until there is no rotation left. The details, however, are context-dependent: the Great Red Spot of Jupiter is a cyclone, for which soliton-type ideas have been offered up to explain its multi-century stability.

Topological defects were studied as early as the 1940's. More abstract examples arose in quantum field theory. The Skyrmion was proposed in the 1960's as a model of the nucleon (neutron or proton) and owed its stability to the mapping . In the 1980's, the instanton and related solutions of the Wess–Zumino–Witten models, rose to considerable popularity because these offered a non-perturbative take in a field that was otherwise dominated by perturbative calculations done with Feynmann diagrams. It provided the impetus for physicists to study the concepts of homotopy and cohomology, which were previously the exclusive domain of mathematics. Further development identified the pervasiveness of the idea: for example, the Schwarzschild solution and Kerr solution to the Einstein field equations (black holes) can be recognized as examples of topological gravitational solitons: this is the Belinski–Zakharov transform.

The terminology of a topological defect vs. a topological soliton, or even just a plain "soliton", varies according to the field of academic study. Thus, the hypothesized but unobserved magnetic monopole is a physical example of the abstract mathematical setting of a monopole; much like the Skyrmion, it owes its stability to belonging to a non-trivial homotopy class for maps of 3-spheres. For the monopole, the target is the magnetic field direction, instead of the isotopic spin direction. Monopoles are usually called "solitons" rather than "defects". Solitions are associated with topological invariants; as more than one configuration may be possible, these will be labelled with a topological charge . The word charge is used in the sense of charge in physics.

The mathematical formalism can be quite complicated. General settings for the PDE's include fiber bundles, and the behavior of the objects themselves are often described in terms of the holonomy and the monodromy. In abstract settings such as string theory, solitons are part and parcel of the game: strings can be arranged into knots, as in knot theory, and so are stable against being untied.

In general, a (quantum) field configuration with a soliton in it will have a higher energy than the ground state or vacuum state, and thus will be called a topological excitation. [1] Although homotopic considerations prevent the classical field from being deformed into the ground state, it is possible for such a transition to occur via quantum tunneling. In this case, higher homotopies will come into play. Thus, for example, the base excitation might be defined by a map into the spin group. If quantum tunneling erases the distinction between this and the ground state, then the next higher group of homotopies is given by the string group. If the process repeats, this results in a walk up the Postnikov tower. These are theoretical hypotheses; demonstrating such concepts in actual lab experiments is a different matter entirely.

Formal treatment

The existence of a topological defect can be demonstrated whenever the boundary conditions entail the existence of homotopically distinct solutions. Typically, this occurs because the boundary on which the conditions are specified has a non-trivial homotopy group which is preserved in differential equations; the solutions to the differential equations are then topologically distinct, and are classified by their homotopy class. Topological defects are not only stable against small perturbations, but cannot decay or be undone or be de-tangled, precisely because there is no continuous transformation that will map them (homotopically) to a uniform or "trivial" solution.

An ordered medium is defined as a region of space described by a function f(r) that assigns to every point in the region an order parameter , and the possible values of the order parameter space constitute an order parameter space. The homotopy theory of defects uses the fundamental group of the order parameter space of a medium to discuss the existence, stability and classifications of topological defects in that medium. [2]

Suppose R is the order parameter space for a medium, and let G be a Lie group of transformations on R. Let H be the symmetry subgroup of G for the medium. Then, the order parameter space can be written as the Lie group quotient [3] R = G/H.

If G is a universal cover for G/H then, it can be shown [3] that πn(G/H) = πn−1(H), where πi denotes the i-th homotopy group.

Various types of defects in the medium can be characterized by elements of various homotopy groups of the order parameter space. For example, (in three dimensions), line defects correspond to elements of π1(R), point defects correspond to elements of π2(R), textures correspond to elements of π3(R). However, defects which belong to the same conjugacy class of π1(R) can be deformed continuously to each other, [2] and hence, distinct defects correspond to distinct conjugacy classes.

Poénaru and Toulouse showed that [4] crossing defects get entangled if and only if they are members of separate conjugacy classes of π1(R).

Examples

Topological defects occur in partial differential equations and are believed[ according to whom? ] to drive[ how? ] phase transitions in condensed matter physics.

The authenticity[ further explanation needed ] of a topological defect depends on the nature of the vacuum in which the system will tend towards if infinite time elapses; false and true topological defects can be distinguished if the defect is in a false vacuum and a true vacuum, respectively.[ clarification needed ]

Solitary wave PDEs

Examples include the soliton or solitary wave which occurs in exactly solvable models, such as

Lambda transitions

Topological defects in lambda transition universality class[ clarification needed ] systems including:

Cosmological defects

Topological defects, of the cosmological type, are extremely high-energy[ clarification needed ] phenomena which are deemed impractical to produce[ according to whom? ] in Earth-bound physics experiments. Topological defects created during the universe's formation could theoretically be observed without significant energy expenditure.

In the Big Bang theory, the universe cools from an initial hot, dense state triggering a series of phase transitions much like what happens in condensed-matter systems such as superconductors. Certain[ which? ] grand unified theories predict the formation of stable topological defects in the early universe during these phase transitions.

Symmetry breaking

Depending on the nature of symmetry breaking, various solitons are believed to have formed in cosmological phase transitions in the early universe according to the Kibble-Zurek mechanism. The well-known topological defects are:

Other more complex hybrids of these defect types are also possible.

As the universe expanded and cooled, symmetries in the laws of physics began breaking down in regions that spread at the speed of light; topological defects occur at the boundaries of adjacent regions.[ how? ] The matter composing these boundaries is in an ordered phase, which persists after the phase transition to the disordered phase is completed for the surrounding regions.

Observation

Topological defects have not been identified by astronomers; however, certain types are not compatible with current observations. In particular, if domain walls and monopoles were present in the observable universe, they would result in significant deviations from what astronomers can see.

Because of these observations, the formation of defects within the observable universe is highly constrained, requiring special circumstances (see Inflation (cosmology)). On the other hand, cosmic strings have been suggested as providing the initial 'seed'-gravity around which the large-scale structure of the cosmos of matter has condensed. Textures are similarly benign.[ clarification needed ] In late 2007, a cold spot in the cosmic microwave background provided evidence of a possible texture. [5]

Classes of stable defects in biaxial nematics Biaxial.png
Classes of stable defects in biaxial nematics

Condensed matter

In condensed matter physics, the theory of homotopy groups provides a natural setting for description and classification of defects in ordered systems. [2] Topological methods have been used in several problems of condensed matter theory. Poénaru and Toulouse used topological methods to obtain a condition for line (string) defects in liquid crystals that can cross each other without entanglement. It was a non-trivial application of topology that first led to the discovery of peculiar hydrodynamic behavior in the A-phase of superfluid helium-3. [2]

Stable defects

Homotopy theory is deeply related to the stability of topological defects. In the case of line defect, if the closed path can be continuously deformed into one point, the defect is not stable, and otherwise, it is stable.

Unlike in cosmology and field theory, topological defects in condensed matter have been experimentally observed. [6] Ferromagnetic materials have regions of magnetic alignment separated by domain walls. Nematic and bi-axial nematic liquid crystals display a variety of defects including monopoles, strings, textures etc. [2] In crystalline solids, the most common topological defects are dislocations, which play an important role in the prediction of the mechanical properties of crystals, especially crystal plasticity.

Topological defects in magnetic systems

In magnetic systems, topological defects include 2D defects such as skyrmions (with integer skyrmion charge), or 3D defects such as Hopfions (with integer Hopf index). The definition can be extended to include dislocations of the helimagnetic order, such as edge dislocations [7] [8] and screw dislocations [9] (that have an integer value of the Burgers vector)

Images

A static solution to
L
=
[?]
m
ph
[?]
m
ph
-
(
ph
2
-
1
)
2
{\displaystyle {\mathcal {L}}=\partial _{\mu }\phi \partial ^{\mu }\phi -\left(\phi ^{2}-1\right)^{2}}
in (1 + 1)-dimensional spacetime. DoubleWellSoliton.png
A static solution to in (1 + 1)-dimensional spacetime.
A soliton and an antisoliton colliding with velocities +-sinh(0.05) and annihilating. DoubleWellSolitonAntisoliton.gif
A soliton and an antisoliton colliding with velocities ±sinh(0.05) and annihilating.


See also

Related Research Articles

<span class="mw-page-title-main">Condensed matter physics</span> Branch of physics

Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases, that arise from electromagnetic forces between atoms and electrons. More generally, the subject deals with condensed phases of matter: systems of many constituents with strong interactions among them. More exotic condensed phases include the superconducting phase exhibited by certain materials at extremely low cryogenic temperatures, the ferromagnetic and antiferromagnetic phases of spins on crystal lattices of atoms, the Bose–Einstein condensates found in ultracold atomic systems, and liquid crystals. Condensed matter physicists seek to understand the behavior of these phases by experiments to measure various material properties, and by applying the physical laws of quantum mechanics, electromagnetism, statistical mechanics, and other physics theories to develop mathematical models and predict the properties of extremely large groups of atoms.

<span class="mw-page-title-main">Soliton</span> Self-reinforcing single wave packet

In mathematics and physics, a soliton is a nonlinear, self-reinforcing, localized wave packet that is strongly stable, in that it preserves its shape while propagating freely, at constant velocity, and recovers it even after collisions with other such localized wave packets. Its remarkable stability can be traced to a balanced cancellation of nonlinear and dispersive effects in the medium. Solitons were subsequently found to provide stable solutions of a wide class of weakly nonlinear dispersive partial differential equations describing physical systems.

<span class="mw-page-title-main">Magnetic monopole</span> Hypothetical particle with one magnetic pole

In particle physics, a magnetic monopole is a hypothetical elementary particle that is an isolated magnet with only one magnetic pole. A magnetic monopole would have a net north or south "magnetic charge". Modern interest in the concept stems from particle theories, notably the grand unified and superstring theories, which predict their existence. The known elementary particles that have electric charge are electric monopoles.

<span class="mw-page-title-main">Instanton</span> Solitons in Euclidean spacetime

An instanton is a notion appearing in theoretical and mathematical physics. An instanton is a classical solution to equations of motion with a finite, non-zero action, either in quantum mechanics or in quantum field theory. More precisely, it is a solution to the equations of motion of the classical field theory on a Euclidean spacetime.

<span class="mw-page-title-main">Spontaneous symmetry breaking</span> Symmetry breaking through the vacuum state

Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or the Lagrangian obey symmetries, but the lowest-energy vacuum solutions do not exhibit that same symmetry. When the system goes to one of those vacuum solutions, the symmetry is broken for perturbations around that vacuum even though the entire Lagrangian retains that symmetry.

The sine-Gordon equation is a second-order nonlinear partial differential equation for a function dependent on two variables typically denoted and , involving the wave operator and the sine of .

The Chern–Simons theory is a 3-dimensional topological quantum field theory of Schwarz type developed by Edward Witten. It was discovered first by mathematical physicist Albert Schwarz. It is named after mathematicians Shiing-Shen Chern and James Harris Simons, who introduced the Chern–Simons 3-form. In the Chern–Simons theory, the action is proportional to the integral of the Chern–Simons 3-form.

In quantum mechanics, superselection extends the concept of selection rules.

In theoretical physics, the 't Hooft–Polyakov monopole is a topological soliton similar to the Dirac monopole but without the Dirac string. It arises in the case of a Yang–Mills theory with a gauge group , coupled to a Higgs field which spontaneously breaks it down to a smaller group via the Higgs mechanism. It was first found independently by Gerard 't Hooft and Alexander Polyakov.

In particle theory, the skyrmion is a topologically stable field configuration of a certain class of non-linear sigma models. It was originally proposed as a model of the nucleon by Tony Skyrme in 1961. As a topological soliton in the pion field, it has the remarkable property of being able to model, with reasonable accuracy, multiple low-energy properties of the nucleon, simply by fixing the nucleon radius. It has since found application in solid-state physics, as well as having ties to certain areas of string theory.

The QCD vacuum is the quantum vacuum state of quantum chromodynamics (QCD). It is an example of a non-perturbative vacuum state, characterized by non-vanishing condensates such as the gluon condensate and the quark condensate in the complete theory which includes quarks. The presence of these condensates characterizes the confined phase of quark matter.

Montonen–Olive duality or electric–magnetic duality is the oldest known example of strong–weak duality or S-duality according to current terminology. It generalizes the electro-magnetic symmetry of Maxwell's equations by stating that magnetic monopoles, which are usually viewed as emergent quasiparticles that are "composite", can in fact be viewed as "elementary" quantized particles with electrons playing the reverse role of "composite" topological solitons; the viewpoints are equivalent and the situation dependent on the duality. It was later proven to hold true when dealing with a N = 4 supersymmetric Yang–Mills theory. It is named after Finnish physicist Claus Montonen and British physicist David Olive after they proposed the idea in their academic paper Magnetic monopoles as gauge particles? where they state:

There should be two "dual equivalent" field formulations of the same theory in which electric (Noether) and magnetic (topological) quantum numbers exchange roles.

In physics, a topological quantum number is any quantity, in a physical theory, that takes on only one of a discrete set of values, due to topological considerations. Most commonly, topological quantum numbers are topological invariants associated with topological defects or soliton-type solutions of some set of differential equations modeling a physical system, as the solitons themselves owe their stability to topological considerations. The specific "topological considerations" are usually due to the appearance of the fundamental group or a higher-dimensional homotopy group in the description of the problem, quite often because the boundary, on which the boundary conditions are specified, has a non-trivial homotopy group that is preserved by the differential equations. The topological quantum number of a solution is sometimes called the winding number of the solution, or, more precisely, it is the degree of a continuous mapping.

Erick J. Weinberg is a theoretical physicist and professor of physics at Columbia University.

The quantum spin Hall state is a state of matter proposed to exist in special, two-dimensional semiconductors that have a quantized spin-Hall conductance and a vanishing charge-Hall conductance. The quantum spin Hall state of matter is the cousin of the integer quantum Hall state, and that does not require the application of a large magnetic field. The quantum spin Hall state does not break charge conservation symmetry and spin- conservation symmetry.

Nicholas Stephen Manton is a British mathematical physicist. He is a Professor of Mathematical Physics at the Department of Applied Mathematics and Theoretical Physics of the University of Cambridge and a fellow of St John's College.

A domain wall is a term used in physics which can have similar meanings in magnetism, optics, or string theory. These phenomena can all be generically described as topological solitons which occur whenever a discrete symmetry is spontaneously broken.

The Kibble–Zurek mechanism (KZM) describes the non-equilibrium dynamics and the formation of topological defects in a system which is driven through a continuous phase transition at finite rate. It is named after Tom W. B. Kibble, who pioneered the study of domain structure formation through cosmological phase transitions in the early universe, and Wojciech H. Zurek, who related the number of defects it creates to the critical exponents of the transition and to its rate—to how quickly the critical point is traversed.

<span class="mw-page-title-main">Magnetic skyrmion</span> Condensed matter phenomenon; vortex-like magnetic quasiparticle

In physics, magnetic skyrmions are statically stable solitons which have been predicted theoretically and observed experimentally in condensed matter systems. Magnetic skyrmions can be formed in magnetic materials in their 'bulk' such as in manganese monosilicide (MnSi), or in magnetic thin films. They can be achiral, or chiral in nature, and may exist both as dynamic excitations or stable or metastable states. Although the broad lines defining magnetic skyrmions have been established de facto, there exist a variety of interpretations with subtle differences.

<span class="mw-page-title-main">Hopfion</span> Topological soliton

A hopfion is a topological soliton. It is a stable three-dimensional localised configuration of a three-component field with a knotted topological structure. They are the three-dimensional counterparts of 2D skyrmions, which exhibit similar topological properties in 2D. Hopfions are widely studied in many physical systems over the last half century, as summarized here http://hopfion.com

References

  1. F. A. Bais, Topological excitations in gauge theories; An introduction from the physical point of view. Springer Lecture Notes in Mathematics, vol. 926 (1982)
  2. 1 2 3 4 5 Mermin, N. D. (1979). "The topological theory of defects in ordered media". Reviews of Modern Physics. 51 (3): 591–648. Bibcode:1979RvMP...51..591M. doi:10.1103/RevModPhys.51.591.
  3. 1 2 Nakahara, Mikio (2003). Geometry, Topology and Physics. Taylor & Francis. ISBN   978-0-7503-0606-5.
  4. Poénaru, V.; Toulouse, G. (1977). "The crossing of defects in ordered media and the topology of 3-manifolds". Le Journal de Physique. 38 (8): 887–895. CiteSeerX   10.1.1.466.9916 . doi:10.1051/jphys:01977003808088700. S2CID   93172461.
  5. Cruz, M.; Turok, N.; Vielva, P.; Martínez-González, E.; Hobson, M. (2007). "A Cosmic Microwave Background Feature Consistent with a Cosmic Texture". Science. 318 (5856): 1612–1614. arXiv: 0710.5737 . Bibcode:2007Sci...318.1612C. doi:10.1126/science.1148694. PMID   17962521. S2CID   12735226.
  6. "Topological defects". Cambridge cosmology.
  7. Schoenherr, P.; Müller, J.; Köhler, L.; Rosch, A.; Kanazawa, N.; Tokura, Y.; Garst, M.; Meier, D. (May 2018). "Topological domain walls in helimagnets". Nature Physics. 14 (5): 465–468. arXiv: 1704.06288 . doi:10.1038/s41567-018-0056-5. ISSN   1745-2481.
  8. Dussaux, A.; Schoenherr, P.; Koumpouras, K.; Chico, J.; Chang, K.; Lorenzelli, L.; Kanazawa, N.; Tokura, Y.; Garst, M.; Bergman, A.; Degen, C. L.; Meier, D. (18 August 2016). "Local dynamics of topological magnetic defects in the itinerant helimagnet FeGe". Nature Communications. 7 (1): 12430. doi: 10.1038/ncomms12430 . ISSN   2041-1723. PMC   4992142 .
  9. Azhar, Maria; Kravchuk, Volodymyr P.; Garst, Markus (12 April 2022). "Screw Dislocations in Chiral Magnets". Physical Review Letters. 128 (15): 157204. arXiv: 2109.04338 . doi:10.1103/PhysRevLett.128.157204.