Topological quantum number

Last updated

In physics, a topological quantum number (also called topological charge) is any quantity, in a physical theory, that takes on only one of a discrete set of values, due to topological considerations. Most commonly, topological quantum numbers are topological invariants associated with topological defects or soliton-type solutions of some set of differential equations modeling a physical system, as the solitons themselves owe their stability to topological considerations. The specific "topological considerations" are usually due to the appearance of the fundamental group or a higher-dimensional homotopy group in the description of the problem, quite often because the boundary, on which the boundary conditions are specified, has a non-trivial homotopy group that is preserved by the differential equations. The topological quantum number of a solution is sometimes called the winding number of the solution, or, more precisely, it is the degree of a continuous mapping.

Contents

Recent[ when? ] ideas about the nature of phase transitions indicates that topological quantum numbers, and their associated solutions, can be created or destroyed during a phase transition.[ citation needed ]

Particle physics

In particle physics, an example is given by the Skyrmion, for which the baryon number is a topological quantum number. The origin comes from the fact that the isospin is modelled by SU(2), which is isomorphic to the 3-sphere and inherits the group structure of SU(2) through its bijective association, so the isomorphism is in the category of topological groups. By taking real three-dimensional space, and closing it with a point at infinity, one also gets a 3-sphere. Solutions to Skyrme's equations in real three-dimensional space map a point in "real" (physical; Euclidean) space to a point on the 3-manifold SU(2). Topologically distinct solutions "wrap" the one sphere around the other, such that one solution, no matter how it is deformed, cannot be "unwrapped" without creating a discontinuity in the solution. In physics, such discontinuities are associated with infinite energy, and are thus not allowed.

In the above example, the topological statement is that the 3rd homotopy group of the three sphere is

and so the baryon number can only take on integer values.

A generalization of these ideas is found in the Wess–Zumino–Witten model.

Exactly solvable models

Additional examples can be found in the domain of exactly solvable models, such as the sine-Gordon equation, the Korteweg–de Vries equation, and the Ishimori equation. The one-dimensional sine-Gordon equation makes for a particularly simple example, as the fundamental group at play there is

and so is literally a winding number: a circle can be wrapped around a circle an integer number of times. Quantum sine-Gordon model is equivalent to massive Thirring model. Fundamental excitations are fermions: topological quantum number is the number of fermions. After quantization of sine-Gordon model the topological charge become 'fractional'. Consistent consideration of ultraviolet renormalization shows that a fractional number of fermions repelled over the ultraviolet cutoff. So the gets multiplied by a fractional number depending on Planck constant.

Solid state physics

In solid state physics, certain types of crystalline dislocations, such as screw dislocations, can be described by topological solitons. An example includes screw-type dislocations associated with Germanium whiskers.

See also

Related Research Articles

Fermion One of two classes of elementary particles

In particle physics, a fermion is a particle that follows Fermi–Dirac statistics and generally has half odd integer spin: spin 1/2, spin 3/2, etc. These particles obey the Pauli exclusion principle. Fermions include all quarks and leptons, as well as all composite particles made of an odd number of these, such as all baryons and many atoms and nuclei. Fermions differ from bosons, which obey Bose–Einstein statistics.

Soliton a self-reinforcing single wave packet that maintains its shape while it propagates at a constant velocity

In mathematics and physics, a soliton or solitary wave is a self-reinforcing wave packet that maintains its shape while it propagates at a constant velocity. Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium. Solitons are the solutions of a widespread class of weakly nonlinear dispersive partial differential equations describing physical systems.

Winding number Number of times a curve wraps around a point in the plane

In mathematics, the winding number or winding index of a closed curve in the plane around a given point is an integer representing the total number of times that curve travels counterclockwise around the point. The winding number depends on the orientation of the curve, and is negative if the curve travels around the point clockwise.

An instanton is a notion appearing in theoretical and mathematical physics. An instanton is a classical solution to equations of motion with a finite, non-zero action, either in quantum mechanics or in quantum field theory. More precisely, it is a solution to the equations of motion of the classical field theory on a Euclidean spacetime.

The sine-Gordon equation is a nonlinear hyperbolic partial differential equation in 1 + 1 dimensions involving the d'Alembert operator and the sine of the unknown function. It was originally introduced by Edmond Bour (1862) in the course of study of surfaces of constant negative curvature as the Gauss–Codazzi equation for surfaces of curvature −1 in 3-space, and rediscovered by Frenkel and Kontorova (1939) in their study of crystal dislocations known as the Frenkel–Kontorova model. This equation attracted a lot of attention in the 1970s due to the presence of soliton solutions.

In theoretical physics, a chiral anomaly is the anomalous nonconservation of a chiral current. In everyday terms, it is equivalent to a sealed box that contained equal numbers of left and right-handed bolts, but when opened was found to have more left than right, or vice versa.

A topological soliton or "toron" occurs when two adjoining structures or spaces are in some way "out of phase" with each other in ways that make a seamless transition between them impossible. One of the simplest and most commonplace examples of a topological soliton occurs in old-fashioned coiled telephone handset cords, which are usually coiled clockwise. Years of picking up the handset can end up coiling parts of the cord in the opposite counterclockwise direction, and when this happens there will be a distinctive larger loop that separates the two directions of coiling. This odd looking transition loop, which is neither clockwise nor counterclockwise, is an excellent example of a topological soliton. No matter how complex the context, anything that qualifies as a topological soliton must at some level exhibit this same simple issue of reconciliation seen in the twisted phone cord example.

Anomaly (physics)

In quantum physics an anomaly or quantum anomaly is the failure of a symmetry of a theory's classical action to be a symmetry of any regularization of the full quantum theory. In classical physics, a classical anomaly is the failure of a symmetry to be restored in the limit in which the symmetry-breaking parameter goes to zero. Perhaps the first known anomaly was the dissipative anomaly in turbulence: time-reversibility remains broken at the limit of vanishing viscosity.

In physics, an anyon is a type of quasiparticle that occurs only in two-dimensional systems, with properties much less restricted than the two kinds of standard elementary particles, fermions and bosons. In general, the operation of exchanging two identical particles, although it may cause a global phase shift, cannot affect observables. Anyons are generally classified as abelian or non-abelian. Abelian anyons play a major role in the fractional quantum Hall effect. Non-abelian anyons have not been definitively detected, although this is an active area of research.

The Chern–Simons theory is a 3-dimensional topological quantum field theory of Schwarz type developed by Edward Witten. It was discovered firstly by mathematical physicist Albert Schwarz. It is named after mathematicians Shiing-Shen Chern and James Harris Simons, who introduced the Chern–Simons 3-form. In the Chern–Simons theory, the action is proportional to the integral of the Chern–Simons 3-form.

Linking number

In mathematics, the linking number is a numerical invariant that describes the linking of two closed curves in three-dimensional space. Intuitively, the linking number represents the number of times that each curve winds around the other. The linking number is always an integer, but may be positive or negative depending on the orientation of the two curves.

Sphere eversion Topological operation of turning a sphere inside-out without creasing

In differential topology, sphere eversion is the process of turning a sphere inside out in a three-dimensional space. Remarkably, it is possible to smoothly and continuously turn a sphere inside out in this way without cutting or tearing it or creating any crease. This is surprising, both to non-mathematicians and to those who understand regular homotopy, and can be regarded as a veridical paradox; that is something that, while being true, on first glance seems false.

In theoretical physics, the 't Hooft–Polyakov monopole is a topological soliton similar to the Dirac monopole but without any singularities. It arises in the case of a Yang–Mills theory with a gauge group G, coupled to a Higgs field which spontaneously breaks it down to a smaller group H via the Higgs mechanism. It was first found independently by Gerard 't Hooft and Alexander Polyakov.

In particle theory, the skyrmion is a topologically stable field configuration of a certain class of non-linear sigma models. It was originally proposed as a model of the nucleon by Tony Skyrme in 1961. As a topological soliton in the pion field, it has the remarkable property of being able to model, with reasonable accuracy, multiple low-energy properties of the nucleon, simply by fixing the nucleon radius. It has since found application in solid-state physics, as well as having ties to certain areas of string theory.

In mathematics, a half-integer is a number of the form

In theoretical condensed matter physics and particle physics, bosonization is a mathematical procedure by which a system of interacting fermions in (1+1) dimensions can be transformed to a system of massless, non-interacting bosons. The method of bosonization was conceived independently by particle physicists Sidney Coleman and Stanley Mandelstam; and condensed matter physicists Daniel C. Mattis and Alan Luther in 1975.

The Thirring model is an exactly solvable quantum field theory which describes the self-interactions of a Dirac field in (1+1) dimensions.

A topological quantum computer is a theoretical quantum computer proposed by Russian-American physicist Alexei Kitaev in 1997. It employs two-dimensional quasiparticles called anyons, whose world lines pass around one another to form braids in a three-dimensional spacetime. These braids form the logic gates that make up the computer. The advantage of a quantum computer based on quantum braids over using trapped quantum particles is that the former is much more stable. Small, cumulative perturbations can cause quantum states to decohere and introduce errors in the computation, but such small perturbations do not change the braids' topological properties. This is like the effort required to cut a string and reattach the ends to form a different braid, as opposed to a ball bumping into a wall.

Olaf Lechtenfeld is a German mathematical physicist, academic and researcher. He is a full professor at the Institute of Theoretical Physics at Leibniz University, where he founded the Riemann Center for Geometry and Physics.

References