Condensed matter physics |
---|
In physics, topological order [1] is a kind of order in the zero-temperature phase of matter (also known as quantum matter). Macroscopically, topological order is defined and described by robust ground state degeneracy [2] and quantized non-abelian geometric phases of degenerate ground states. [1] Microscopically, topological orders correspond to patterns of long-range quantum entanglement. [3] States with different topological orders (or different patterns of long range entanglements) cannot change into each other without a phase transition.
Various topologically ordered states have interesting properties, such as (1) topological degeneracy and fractional statistics or non-abelian group statistics that can be used to realize a topological quantum computer; (2) perfect conducting edge states that may have important device applications; (3) emergent gauge field and Fermi statistics that suggest a quantum information origin of elementary particles; [4] (4) topological entanglement entropy that reveals the entanglement origin of topological order, etc. Topological order is important in the study of several physical systems such as spin liquids, [5] [6] [7] [8] and the quantum Hall effect, [9] [10] along with potential applications to fault-tolerant quantum computation. [11]
Topological insulators [12] and topological superconductors (beyond 1D) do not have topological order as defined above, their entanglements being only short-ranged, but are examples of symmetry-protected topological order.
Matter composed of atoms can have different properties and appear in different forms, such as solid, liquid, superfluid, etc. These various forms of matter are often called states of matter or phases. According to condensed matter physics and the principle of emergence, the different properties of materials generally arise from the different ways in which the atoms are organized in the materials. Those different organizations of the atoms (or other particles) are formally called the orders in the materials. [13]
Atoms can organize in many ways which lead to many different orders and many different types of materials. Landau symmetry-breaking theory provides a general understanding of these different orders. It points out that different orders really correspond to different symmetries in the organizations of the constituent atoms. As a material changes from one order to another order (i.e., as the material undergoes a phase transition), what happens is that the symmetry of the organization of the atoms changes.
For example, atoms have a random distribution in a liquid, so a liquid remains the same as we displace atoms by an arbitrary distance. We say that a liquid has a continuous translation symmetry. After a phase transition, a liquid can turn into a crystal. In a crystal, atoms organize into a regular array (a lattice). A lattice remains unchanged only when we displace it by a particular distance (integer times a lattice constant), so a crystal has only discrete translation symmetry. The phase transition between a liquid and a crystal is a transition that reduces the continuous translation symmetry of the liquid to the discrete symmetry of the crystal. Such a change in symmetry is called symmetry breaking. The essence of the difference between liquids and crystals is therefore that the organizations of atoms have different symmetries in the two phases.
Landau symmetry-breaking theory has been a very successful theory. For a long time, physicists believed that Landau Theory described all possible orders in materials, and all possible (continuous) phase transitions.
However, since the late 1980s, it has become gradually apparent that Landau symmetry-breaking theory may not describe all possible orders. In an attempt to explain high temperature superconductivity [14] the chiral spin state was introduced. [5] [6] At first, physicists still wanted to use Landau symmetry-breaking theory to describe the chiral spin state. They identified the chiral spin state as a state that breaks the time reversal and parity symmetries, but not the spin rotation symmetry. This should be the end of the story according to Landau's symmetry breaking description of orders. However, it was quickly realized that there are many different chiral spin states that have exactly the same symmetry, so symmetry alone was not enough to characterize different chiral spin states. This means that the chiral spin states contain a new kind of order that is beyond the usual symmetry description. [15] The proposed, new kind of order was named "topological order". [1] The name "topological order" is motivated by the low energy effective theory of the chiral spin states which is a topological quantum field theory (TQFT). [16] [17] [18] New quantum numbers, such as ground state degeneracy [15] (which can be defined on a closed space or an open space with gapped boundaries, including both Abelian topological orders [19] [20] and non-Abelian topological orders [21] [22] ) and the non-Abelian geometric phase of degenerate ground states, [1] were introduced to characterize and define the different topological orders in chiral spin states. More recently, it was shown that topological orders can also be characterized by topological entropy. [23] [24]
But experiments[ which? ] soon indicated[ how? ] that chiral spin states do not describe high-temperature superconductors, and the theory of topological order became a theory with no experimental realization. However, the similarity between chiral spin states and quantum Hall states allows one to use the theory of topological order to describe different quantum Hall states. [2] Just like chiral spin states, different quantum Hall states all have the same symmetry and are outside the Landau symmetry-breaking description. One finds that the different orders in different quantum Hall states can indeed be described by topological orders, so the topological order does have experimental realizations.
The fractional quantum Hall (FQH) state was discovered in 1982 [9] [10] before the introduction of the concept of topological order in 1989. But the FQH state is not the first experimentally discovered topologically ordered state. The superconductor, discovered in 1911, is the first experimentally discovered topologically ordered state; it has Z2 topological order. [note 1]
Although topologically ordered states usually appear in strongly interacting boson/fermion systems, a simple kind of topological order can also appear in free fermion systems. This kind of topological order corresponds to integral quantum Hall state, which can be characterized by the Chern number of the filled energy band if we consider integer quantum Hall state on a lattice. Theoretical calculations have proposed that such Chern numbers can be measured for a free fermion system experimentally. [28] [29] It is also well known that such a Chern number can be measured (maybe indirectly) by edge states.
The most important characterization of topological orders would be the underlying fractionalized excitations (such as anyons) and their fusion statistics and braiding statistics (which can go beyond the quantum statistics of bosons or fermions). Current research works show that the loop and string like excitations exist for topological orders in the 3+1 dimensional spacetime, and their multi-loop/string-braiding statistics are the crucial signatures for identifying 3+1 dimensional topological orders. [30] [31] [32] The multi-loop/string-braiding statistics of 3+1 dimensional topological orders can be captured by the link invariants of particular topological quantum field theory in 4 spacetime dimensions. [32]
A large class of 2+1D topological orders is realized through a mechanism called string-net condensation. [33] This class of topological orders can have a gapped edge and are classified by unitary fusion category (or monoidal category) theory. One finds that string-net condensation can generate infinitely many different types of topological orders, which may indicate that there are many different new types of materials remaining to be discovered.
The collective motions of condensed strings give rise to excitations above the string-net condensed states. Those excitations turn out to be gauge bosons. The ends of strings are defects which correspond to another type of excitations. Those excitations are the gauge charges and can carry Fermi or fractional statistics. [34]
The condensations of other extended objects such as "membranes", [35] "brane-nets", [36] and fractals also lead to topologically ordered phases [37] and "quantum glassiness". [38] [39]
We know that group theory is the mathematical foundation of symmetry-breaking orders. What is the mathematical foundation of topological order? It was found that a subclass of 2+1D topological orders—Abelian topological orders—can be classified by a K-matrix approach. [40] [41] [42] [43] The string-net condensation suggests that tensor category (such as fusion category or monoidal category) is part of the mathematical foundation of topological order in 2+1D. The more recent researches suggest that (up to invertible topological orders that have no fractionalized excitations):
Topological order in higher dimensions may be related to n-Category theory. Quantum operator algebra is a very important mathematical tool in studying topological orders.
Some also suggest that topological order is mathematically described by extended quantum symmetry. [44]
The materials described by Landau symmetry-breaking theory have had a substantial impact on technology. For example, ferromagnetic materials that break spin rotation symmetry can be used as the media of digital information storage. A hard drive made of ferromagnetic materials can store gigabytes of information. Liquid crystals that break the rotational symmetry of molecules find wide application in display technology. Crystals that break translation symmetry lead to well defined electronic bands which in turn allow us to make semiconducting devices such as transistors. Different types of topological orders are even richer than different types of symmetry-breaking orders. This suggests their potential for exciting, novel applications.
One theorized application would be to use topologically ordered states as media for quantum computing in a technique known as topological quantum computing. A topologically ordered state is a state with complicated non-local quantum entanglement. The non-locality means that the quantum entanglement in a topologically ordered state is distributed among many different particles. As a result, the pattern of quantum entanglements cannot be destroyed by local perturbations. This significantly reduces the effect of decoherence. This suggests that if we use different quantum entanglements in a topologically ordered state to encode quantum information, the information may last much longer. [45] The quantum information encoded by the topological quantum entanglements can also be manipulated by dragging the topological defects around each other. This process may provide a physical apparatus for performing quantum computations. [46] Therefore, topologically ordered states may provide natural media for both quantum memory and quantum computation. Such realizations of quantum memory and quantum computation may potentially be made fault tolerant. [11]
Topologically ordered states in general have a special property that they contain non-trivial boundary states. In many cases, those boundary states become perfect conducting channel that can conduct electricity without generating heat. [47] This can be another potential application of topological order in electronic devices.
Similarly to topological order, topological insulators [48] [49] also have gapless boundary states. The boundary states of topological insulators play a key role in the detection and the application of topological insulators. This observation naturally leads to a question: are topological insulators examples of topologically ordered states? In fact topological insulators are different from topologically ordered states defined in this article. Topological insulators only have short-ranged entanglements and have no topological order, while the topological order defined in this article is a pattern of long-range entanglement. Topological order is robust against any perturbations. It has emergent gauge theory, emergent fractional charge and fractional statistics. In contrast, topological insulators are robust only against perturbations that respect time-reversal and U(1) symmetries. Their quasi-particle excitations have no fractional charge and fractional statistics. Strictly speaking, topological insulator is an example of symmetry-protected topological (SPT) order, [50] where the first example of SPT order is the Haldane phase of spin-1 chain. [51] [52] [53] [54] But the Haldane phase of spin-2 chain has no SPT order.
Landau symmetry-breaking theory is a cornerstone of condensed matter physics. It is used to define the territory of condensed matter research. The existence of topological order appears to indicate that nature is much richer than Landau symmetry-breaking theory has so far indicated. So topological order opens up a new direction in condensed matter physics—a new direction of highly entangled quantum matter. We realize that quantum phases of matter (i.e. the zero-temperature phases of matter) can be divided into two classes: long range entangled states and short range entangled states. [3] Topological order is the notion that describes the long range entangled states: topological order = pattern of long range entanglements. Short range entangled states are trivial in the sense that they all belong to one phase. However, in the presence of symmetry, even short range entangled states are nontrivial and can belong to different phases. Those phases are said to contain SPT order. [50] SPT order generalizes the notion of topological insulator to interacting systems.
Some suggest that topological order (or more precisely, string-net condensation) in local bosonic (spin) models has the potential to provide a unified origin for photons, electrons and other elementary particles in our universe. [4]
In physics, a spin network is a type of diagram which can be used to represent states and interactions between particles and fields in quantum mechanics. From a mathematical perspective, the diagrams are a concise way to represent multilinear functions and functions between representations of matrix groups. The diagrammatic notation can thus greatly simplify calculations.
In quantum physics an anomaly or quantum anomaly is the failure of a symmetry of a theory's classical action to be a symmetry of any regularization of the full quantum theory. In classical physics, a classical anomaly is the failure of a symmetry to be restored in the limit in which the symmetry-breaking parameter goes to zero. Perhaps the first known anomaly was the dissipative anomaly in turbulence: time-reversibility remains broken at the limit of vanishing viscosity.
In physics, an anyon is a type of quasiparticle so far observed only in two-dimensional systems. In three-dimensional systems, only two kinds of elementary particles are seen: fermions and bosons. Anyons have statistical properties intermediate between fermions and bosons. In general, the operation of exchanging two identical particles, although it may cause a global phase shift, cannot affect observables. Anyons are generally classified as abelian or non-abelian. Abelian anyons, detected by two experiments in 2020, play a major role in the fractional quantum Hall effect.
The fractional quantum Hall effect (FQHE) is a physical phenomenon in which the Hall conductance of 2-dimensional (2D) electrons shows precisely quantized plateaus at fractional values of , where e is the electron charge and h is the Planck constant. It is a property of a collective state in which electrons bind magnetic flux lines to make new quasiparticles, and excitations have a fractional elementary charge and possibly also fractional statistics. The 1998 Nobel Prize in Physics was awarded to Robert Laughlin, Horst Störmer, and Daniel Tsui "for their discovery of a new form of quantum fluid with fractionally charged excitations". The microscopic origin of the FQHE is a major research topic in condensed matter physics.
A topological quantum computer is a theoretical quantum computer proposed by Russian-American physicist Alexei Kitaev in 1997. It employs quasiparticles in two-dimensional systems, called anyons, whose world lines pass around one another to form braids in a three-dimensional spacetime. These braids form the logic gates that make up the computer. The advantage of a quantum computer based on quantum braids over using trapped quantum particles is that the former is much more stable. Small, cumulative perturbations can cause quantum states to decohere and introduce errors in the computation, but such small perturbations do not change the braids' topological properties. This is like the effort required to cut a string and reattach the ends to form a different braid, as opposed to a ball bumping into a wall.
A Majorana fermion, also referred to as a Majorana particle, is a fermion that is its own antiparticle. They were hypothesised by Ettore Majorana in 1937. The term is sometimes used in opposition to a Dirac fermion, which describes fermions that are not their own antiparticles.
In condensed matter physics, a string-net is an extended object whose collective behavior has been proposed as a physical mechanism for topological order by Michael A. Levin and Xiao-Gang Wen. A particular string-net model may involve only closed loops; or networks of oriented, labeled strings obeying branching rules given by some gauge group; or still more general networks.
The topological entanglement entropy or topological entropy, usually denoted by , is a number characterizing many-body states that possess topological order.
Quantum dimer models were introduced to model the physics of resonating valence bond (RVB) states in lattice spin systems. The only degrees of freedom retained from the motivating spin systems are the valence bonds, represented as dimers which live on the lattice bonds. In typical dimer models, the dimers do not overlap.
The quantum spin Hall state is a state of matter proposed to exist in special, two-dimensional semiconductors that have a quantized spin-Hall conductance and a vanishing charge-Hall conductance. The quantum spin Hall state of matter is the cousin of the integer quantum Hall state, and that does not require the application of a large magnetic field. The quantum spin Hall state does not break charge conservation symmetry and spin- conservation symmetry.
Xiao-Gang Wen is a Chinese-American physicist. He is a Cecil and Ida Green Professor of Physics at the Massachusetts Institute of Technology and Distinguished Visiting Research Chair at the Perimeter Institute for Theoretical Physics. His expertise is in condensed matter theory in strongly correlated electronic systems. In Oct. 2016, he was awarded the Oliver E. Buckley Condensed Matter Prize.
Subir Sachdev is Herchel Smith Professor of Physics at Harvard University specializing in condensed matter. He was elected to the U.S. National Academy of Sciences in 2014, received the Lars Onsager Prize from the American Physical Society and the Dirac Medal from the ICTP in 2018, and was elected Foreign Member of the Royal Society ForMemRS in 2023. He was a co-editor of the Annual Review of Condensed Matter Physics 2017–2019, and is Editor-in-Chief of Reports on Progress in Physics 2022-.
A topological insulator is a material whose interior behaves as an electrical insulator while its surface behaves as an electrical conductor, meaning that electrons can only move along the surface of the material.
The toric code is a topological quantum error correcting code, and an example of a stabilizer code, defined on a two-dimensional spin lattice. It is the simplest and most well studied of the quantum double models. It is also the simplest example of topological order—Z2 topological order (first studied in the context of Z2 spin liquid in 1991). The toric code can also be considered to be a Z2 lattice gauge theory in a particular limit. It was introduced by Alexei Kitaev.
In condensed matter physics, an AKLT model, also known as an Affleck-Kennedy-Lieb-Tasaki model is an extension of the one-dimensional quantum Heisenberg spin model. The proposal and exact solution of this model by Ian Affleck, Elliott H. Lieb, Tom Kennedy and Hal Tasaki provided crucial insight into the physics of the spin-1 Heisenberg chain. It has also served as a useful example for such concepts as valence bond solid order, symmetry-protected topological order and matrix product state wavefunctions.
In condensed matter physics, a quantum spin liquid is a phase of matter that can be formed by interacting quantum spins in certain magnetic materials. Quantum spin liquids (QSL) are generally characterized by their long-range quantum entanglement, fractionalized excitations, and absence of ordinary magnetic order.
In quantum many-body physics, topological degeneracy is a phenomenon in which the ground state of a gapped many-body Hamiltonian becomes degenerate in the limit of large system size such that the degeneracy cannot be lifted by any local perturbations.
Symmetry-protected topological (SPT) order is a kind of order in zero-temperature quantum-mechanical states of matter that have a symmetry and a finite energy gap.
Germán Sierra is a Spanish theoretical physicist, author, and academic. He is Professor of Research at the Institute of Theoretical Physics Autonomous University of Madrid-Spanish National Research Council.
Zhenghan Wang is a Chinese-American mathematician. He is a principal researcher at Microsoft Station Q, as well as a professor of mathematics at the University of California, Santa Barbara.