John Perdew

Last updated
John P. Perdew
John Perdew.jpg
John Perdew gives a talk at the Tulane University 2007 School of Science and Engineering (SSE) Research Day
Born (1943-08-30) August 30, 1943 (age 81)
Alma mater Cornell University (Ph.D., M.S.), Gettysburg College (A.B.)
AwardsElected to National Academy of Sciences
Scientific career
Fields solid-state physics, density functional theory, quantum chemistry
Institutions Temple University, Tulane University

John P. Perdew (born August 30, 1943) is a theoretical condensed matter physicist known for his contributions to the fields of solid-state physics and quantum chemistry. His work on density functional theory has led to him being one of the world's most cited physicists. [1] Perdew currently teaches and conducts research at Tulane University. [2]

Contents

Early life and education

John Perdew was born and raised in Cumberland, Maryland. After showing an aptitude for mathematics in high school, Perdew received a National Merit Scholarship and attended Gettysburg College, where he developed his interest in physics.

Perdew graduated Summa cum laude from Gettysburg College with a Bachelor of Arts in physics in 1965. He then received a Ph.D. in physics from Cornell University in 1971. His doctoral advisor was John W. Wilkins, who introduced Perdew to solid-state theory. [1]

Academic career

Perdew began his academic career as a postdoctoral fellow under Sy Vosko at the University of Toronto from 1971 to 1974, and then with David Langreth at Rutgers University from 1975 to 1977. [1]

Perdew started his teaching career in 1977 at Tulane University, where he taught until 2013. During his time at Tulane, Perdew taught physics and supervised nine completed Ph.D.'s as well as 11 postdoctoral fellows. He received the Outstanding Researcher Award from Tulane's School of Science and Engineering in 2007 [3] and the President's Awards for Excellence in Professional and Graduate Teaching in 2009. [4]

In 2013, Perdew moved to Temple University, where he is a Laura H. Carnell Professor of Physics and Chemistry at Temple's School of Science and Technology, as well as the founding director of the Center for Materials Theory. [5] In 2023, Perdew returned to Tulane University as a Professor of Physics.

Work in density functional theory

John Perdew's best-known scientific contributions are in the field of density functional theory (DFT). He was introduced to DFT by his postdoctoral supervisors at University of Toronto and Rutgers, before it became widely used.

Perdew was one of the early pioneers of density functional theory, helping it become accurate enough for calculations in quantum chemistry, materials science, and geoscience. He made important contributions to the exact adiabatic connection formula for the exchange-correlation energy, the derivative discontinuity and its contribution to the fundamental gap, scaling and other exact constraints on the functionals, the self-interaction correction, the nonempirical generalized gradient approximation (GGA), and the nonempirical meta-GGA. [1]

Visualizing DFT functionals to be a succession of ladder steps, Perdew formulated the Jacob's Ladder strategy for constructing improved density functionals for the exchange-correlation energy. Perdew first presented this theory at the International Congress of Quantum Chemistry's DFT2000 symposium in June 2000, describing five generations of functionals in a sequence he called the Jacob's Ladder. [6] Perdew's Jacob's Ladder scheme has been picked up by other researchers in DFT [7] and progress higher up the ladder continue to appear in the field's scientific literature. [8]

Perdew continues DFT research in his role at Tulane University. His current research interests include the construction of a better meta-GGA and improved descriptions for strong correlation and for the van der Waals interaction. [9]

Impact on field

John Perdew is one of the world's most cited physicists, with over 410,000 Google Scholar citations referring to his work in the field of density functional theory. A study identifies him as possibly the world's most-cited physicist for articles published between 1981 and 2010. Of Perdew's more than 260 published works, a 1996 paper titled "Generalized Gradient Approximation Made Simple" from the journal Physical Review Letters has been cited more than 147,000 times and was the most-cited paper in the field of physics from 1996 to 2010. In total, Perdew has five works among the 10 most-cited physics papers of the past 30 years. [10]

Many of Perdew's peers recognize his influence on the field of density functional theory. He was elected to the National Academy of Sciences (USA) in 2011. Upon naming Perdew as the recipient of the 2012 Materials Theory Award, the Materials Research Society cited Perdew's "pioneering contributions" that resulted in thousands of other researchers being able to perform DFT calculations and simulations. [11]

Honors and awards

John Perdew was elected to the National Academy of Sciences in 2011, and is one of 2,000 distinguished scientists from all fields that help advise the U.S. government on scientific policy. [12] Other notable awards and honors include:

Related Research Articles

<span class="mw-page-title-main">Condensed matter physics</span> Branch of physics

Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases, that arise from electromagnetic forces between atoms and electrons. More generally, the subject deals with condensed phases of matter: systems of many constituents with strong interactions among them. More exotic condensed phases include the superconducting phase exhibited by certain materials at extremely low cryogenic temperatures, the ferromagnetic and antiferromagnetic phases of spins on crystal lattices of atoms, the Bose–Einstein condensates found in ultracold atomic systems, and liquid crystals. Condensed matter physicists seek to understand the behavior of these phases by experiments to measure various material properties, and by applying the physical laws of quantum mechanics, electromagnetism, statistical mechanics, and other physics theories to develop mathematical models and predict the properties of extremely large groups of atoms.

Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions to physical and chemical properties of molecules, materials, and solutions at the atomic level. These calculations include systematically applied approximations intended to make calculations computationally feasible while still capturing as much information about important contributions to the computed wave functions as well as to observable properties such as structures, spectra, and thermodynamic properties. Quantum chemistry is also concerned with the computation of quantum effects on molecular dynamics and chemical kinetics.

<span class="mw-page-title-main">Robert Parr</span> American theoretical chemist (1921–2017)

Robert Ghormley Parr was an American theoretical chemist who was a professor of chemistry at the University of North Carolina at Chapel Hill.

Density functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure of many-body systems, in particular atoms, molecules, and the condensed phases. Using this theory, the properties of a many-electron system can be determined by using functionals - that is, functions that accept a function as input and output a single real number. In the case of DFT, these are functionals of the spatially dependent electron density. DFT is among the most popular and versatile methods available in condensed-matter physics, computational physics, and computational chemistry.

<span class="mw-page-title-main">Walter Kohn</span> American physicist (1923–2016)

Walter Kohn was an Austrian-American theoretical physicist and theoretical chemist. He was awarded, with John Pople, the Nobel Prize in Chemistry in 1998. The award recognized their contributions to the understandings of the electronic properties of materials. In particular, Kohn played the leading role in the development of density functional theory, which made it possible to calculate quantum mechanical electronic structure by equations involving the electronic density. This computational simplification led to more accurate calculations on complex systems as well as many new insights, and it has become an essential tool for materials science, condensed-phase physics, and the chemical physics of atoms and molecules.

Q-Chem is a general-purpose electronic structure package featuring a variety of established and new methods implemented using innovative algorithms that enable fast calculations of large systems on various computer architectures, from laptops and regular lab workstations to midsize clusters, HPCC, and cloud computing using density functional and wave-function based approaches. It offers an integrated graphical interface and input generator; a large selection of functionals and correlation methods, including methods for electronically excited states and open-shell systems; solvation models; and wave-function analysis tools. In addition to serving the computational chemistry community, Q-Chem also provides a versatile code development platform.

The Vienna Ab initio Simulation Package, better known as VASP, is a package written primarily in Fortran for performing ab initio quantum mechanical calculations using either Vanderbilt pseudopotentials, or the projector augmented wave method, and a plane wave basis set. The basic methodology is density functional theory (DFT), but the code also allows use of post-DFT corrections such as hybrid functionals mixing DFT and Hartree–Fock exchange, many-body perturbation theory and dynamical electronic correlations within the random phase approximation (RPA) and MP2.

Local-density approximations (LDA) are a class of approximations to the exchange–correlation (XC) energy functional in density functional theory (DFT) that depend solely upon the value of the electronic density at each point in space. Many approaches can yield local approximations to the XC energy. However, overwhelmingly successful local approximations are those that have been derived from the homogeneous electron gas (HEG) model. In this regard, LDA is generally synonymous with functionals based on the HEG approximation, which are then applied to realistic systems.

Hybrid functionals are a class of approximations to the exchange–correlation energy functional in density functional theory (DFT) that incorporate a portion of exact exchange from Hartree–Fock theory with the rest of the exchange–correlation energy from other sources. The exact exchange energy functional is expressed in terms of the Kohn–Sham orbitals rather than the density, so is termed an implicit density functional. One of the most commonly used versions is B3LYP, which stands for "Becke, 3-parameter, Lee–Yang–Parr".

Axel Dieter Becke is a physical chemist and Professor of Chemistry at Dalhousie University, Canada. He is a leading researcher in the application of density functional theory (DFT) to molecules.

<span class="mw-page-title-main">CP2K</span>

CP2K is a freely available (GPL) quantum chemistry and solid state physics program package, written in Fortran 2008, to perform atomistic simulations of solid state, liquid, molecular, periodic, material, crystal, and biological systems. It provides a general framework for different methods: density functional theory (DFT) using a mixed Gaussian and plane waves approach (GPW) via LDA, GGA, MP2, or RPA levels of theory, classical pair and many-body potentials, semi-empirical and tight-binding Hamiltonians, as well as Quantum Mechanics/Molecular Mechanics (QM/MM) hybrid schemes relying on the Gaussian Expansion of the Electrostatic Potential (GEEP). The Gaussian and Augmented Plane Waves method (GAPW) as an extension of the GPW method allows for all-electron calculations. CP2K can do simulations of molecular dynamics, metadynamics, Monte Carlo, Ehrenfest dynamics, vibrational analysis, core level spectroscopy, energy minimization, and transition state optimization using NEB or dimer method.

<span class="mw-page-title-main">Alex Zunger</span> Research professor in theoretical physics

Alex Zunger is a theoretical physicist, research professor, at the University of Colorado Boulder. He has authored more than 150 papers in Physical Review Letters and Physical Reviews B Rapid Communication, has an h-index over 150, number of citations over 113,000. He co-authored one of the top-five most cited papers ever to be published in the Physical Review family in its over 100 years' history.

MADNESS is a high-level software environment for the solution of integral and differential equations in many dimensions using adaptive and fast harmonic analysis methods with guaranteed precision based on multiresolution analysis and separated representations .

Minnesota Functionals (Myz) are a group of highly parameterized approximate exchange-correlation energy functionals in density functional theory (DFT). They are developed by the group of Donald Truhlar at the University of Minnesota. The Minnesota functionals are available in a large number of popular quantum chemistry computer programs, and can be used for traditional quantum chemistry and solid-state physics calculations.

Eric R. Bittner is a theoretical chemist, physicist, and distinguished professor of chemical physics at the University of Houston.

BigDFT is a free software package for physicists and chemists, distributed under the GNU General Public License, whose main program allows the total energy, charge density, and electronic structure of systems made of electrons and nuclei to be calculated within density functional theory (DFT), using pseudopotentials, and a wavelet basis.

Lu Jeu Sham is an American physicist. He is best known for his work with Walter Kohn on the Kohn–Sham equations.

<span class="mw-page-title-main">Bidyendu Mohan Deb</span> Indian chemist (born 1942)

Bidyendu Mohan Deb is an Indian theoretical chemist, chemical physicist and a professor at the Indian Institute of Science Education and Research, Kolkata (IISER). he is known for his studies in theoretical chemistry and chemical physics. He is an elected fellow of the International Union of Pure and Applied Chemistry, The World Academy of Sciences, Indian National Science Academy and the Indian Academy of Sciences. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards, in 1981, for his contributions to chemical sciences.

Noa Marom is an Israeli materials scientist and computational physicist at Carnegie Mellon University. She was awarded the International Union of Pure and Applied Physics Young Scientist Prize.

Kieron Burke is a professor known for his work in the field of quantum mechanics, particularly in developing and advancing density functional theory (DFT). He holds joint appointments as a distinguished professor in the Departments of Chemistry and Physics at the University of California, Irvine (UCI).

References

  1. 1 2 3 4 5 Scuseria, Gus; Mel Levy; Kieron Burke (March 16, 2009). "Editorial". Journal of Chemical Theory and Computation . 5 (4): 675–678. doi: 10.1021/ct900098q . PMID   26609571. Special Issue in Honor of John P. Perdew for His 65th Birthday
  2. "John P. Perdew, Ph.D." Retrieved 18 May 2024.
  3. 1 2 "Science and Engineering Outstanding Researcher Award". Tulane University School of Science and Engineering. Archived from the original on 22 March 2014. Retrieved 22 March 2014.
  4. 1 2 Simon, Fran (19 May 2009). "Tetlow and Perdew Win Teaching Honors". Tulane University New Wave. Archived from the original on 22 March 2014. Retrieved 22 March 2014.
  5. "Temple welcomes new faculty". Temple University. 2013-09-19. Retrieved 22 March 2014.
  6. Sousa, Sérgio Filipe; Pedro Alexandrino Fernandes; Maria João Ramos (25 August 2007). "General Performance of Density Functionals". The Journal of Physical Chemistry. 111 (42): 10439–10452. Bibcode:2007JPCA..11110439S. doi:10.1021/jp0734474. PMID   17718548.
  7. Janesko, Benjamin G. (26 June 2012). "Rung 3.5 Density Functionals: Another Step on Jacob's Ladder". International Journal of Quantum Chemistry. 113 (2): 83–88. doi:10.1002/qua.24256.
  8. Casida, Mark E. (14 August 2012). "Jacob's Ladder for Time-Dependent Density-Functional Theory: Some Rungs on the Way to Photochemical Heaven". Low-Lying Potential Energy Surfaces. ACS Symposium Series. Vol. 828. American Chemical Society. pp. Chapter 9, pp 199–220. doi:10.1021/bk-2002-0828.ch009. ISBN   978-0-8412-3792-6.
  9. "Solid State Physics and Quantum Chemistry/Density Functional Theory". Temple University Department of Physics. Archived from the original on 23 March 2014. Retrieved 22 March 2014.
  10. Hobgood Ray, Kathryn (29 November 2010). "Physics Professor Is One of World's Most Cited". Tulane University New Wave. Archived from the original on 12 September 2013. Retrieved 23 March 2014.
  11. 1 2 "Materials Research Society Bulletin". Materials Research Society. Archived from the original on 4 March 2016. Retrieved 23 March 2014.
  12. "Perdew Chosen for Top Scientific Honor". Tulane University. Archived from the original on 25 August 2014. Retrieved 23 March 2014.
  13. "John P. Perdew". International Academy of Quantum Molecular Science. Retrieved 23 March 2014.