String-net liquid

Last updated

In condensed matter physics, a string-net is an extended object whose collective behavior has been proposed as a physical mechanism for topological order by Michael A. Levin and Xiao-Gang Wen. A particular string-net model may involve only closed loops; or networks of oriented, labeled strings obeying branching rules given by some gauge group; or still more general networks. [1]

Contents

Overview

The string-net model is claimed to show the derivation of photons, electrons, and U(1) gauge charge, small (relative to the Planck mass) but nonzero masses, and suggestions that the leptons, quarks, and gluons can be modeled in the same way. In other words, string-net condensation provides a unified origin for photons and electrons (or gauge bosons and fermions). It can be viewed as an origin of light and electron (or gauge interactions and Fermi statistics). However, their model does not account for the chiral coupling between the fermions and the SU(2) gauge bosons in the standard model.

For strings labeled by the positive integers, string-nets are the spin networks studied in loop quantum gravity. This has led to the proposal by Levin and Wen, [2] and Smolin, Markopoulou and Konopka [3] that loop quantum gravity's spin networks can give rise to the standard model of particle physics through this mechanism, along with fermi statistics and gauge interactions. To date, a rigorous derivation from LQG's spin networks to Levin and Wen's spin lattice has yet to be done, but the project to do so is called quantum graphity, and in a more recent paper, Tomasz Konopka, Fotini Markopoulou, Simone Severini argued that there are some similarities to spin networks (but not necessarily an exact equivalence) that gives rise to U(1) gauge charge and electrons in the string net mechanism. [4]

Herbertsmithite may be an example of string-net matter. [5] [6]

Examples

Z2 spin liquid

Z2 spin liquid obtained using slave-particle approach may be the first theoretical example of string-net liquid. [7] [8]

The toric code

The toric code is a two-dimensional spin-lattice that acts as a quantum error-correcting code. It is defined on a two-dimensional lattice with toric boundary conditions with a spin-1/2 on each link. It can be shown that the ground-state of the standard toric code Hamiltonian is an equal-weight superposition of closed-string states. [9] Such a ground-state is an example of a string-net condensate [10] which has the same topological order as the Z2 spin liquid above.

Related Research Articles

<span class="mw-page-title-main">Spin network</span> Diagram used to represent quantum field theory calculations

In physics, a spin network is a type of diagram which can be used to represent states and interactions between particles and fields in quantum mechanics. From a mathematical perspective, the diagrams are a concise way to represent multilinear functions and functions between representations of matrix groups. The diagrammatic notation can thus greatly simplify calculations.

<span class="mw-page-title-main">Fermi liquid theory</span> Theoretical model in physics

Fermi liquid theory is a theoretical model of interacting fermions that describes the normal state of the conduction electrons in most metals at sufficiently low temperatures. The theory describes the behavior of many-body systems of particles in which the interactions between particles may be strong. The phenomenological theory of Fermi liquids was introduced by the Soviet physicist Lev Davidovich Landau in 1956, and later developed by Alexei Abrikosov and Isaak Khalatnikov using diagrammatic perturbation theory. The theory explains why some of the properties of an interacting fermion system are very similar to those of the ideal Fermi gas, and why other properties differ.

Induced gravity is an idea in quantum gravity that spacetime curvature and its dynamics emerge as a mean field approximation of underlying microscopic degrees of freedom, similar to the fluid mechanics approximation of Bose–Einstein condensates. The concept was originally proposed by Andrei Sakharov in 1967.

<span class="mw-page-title-main">Topological order</span> Type of order at absolute zero

In physics, topological order is a kind of order in the zero-temperature phase of matter. Macroscopically, topological order is defined and described by robust ground state degeneracy and quantized non-Abelian geometric phases of degenerate ground states. Microscopically, topological orders correspond to patterns of long-range quantum entanglement. States with different topological orders cannot change into each other without a phase transition.

The topological entanglement entropy or topological entropy, usually denoted by , is a number characterizing many-body states that possess topological order.

Quantum dimer models were introduced to model the physics of resonating valence bond (RVB) states in lattice spin systems. The only degrees of freedom retained from the motivating spin systems are the valence bonds, represented as dimers which live on the lattice bonds. In typical dimer models, the dimers do not overlap.

The quantum spin Hall state is a state of matter proposed to exist in special, two-dimensional semiconductors that have a quantized spin-Hall conductance and a vanishing charge-Hall conductance. The quantum spin Hall state of matter is the cousin of the integer quantum Hall state, and that does not require the application of a large magnetic field. The quantum spin Hall state does not break charge conservation symmetry and spin- conservation symmetry.

<span class="mw-page-title-main">Xiao-Gang Wen</span> Chinese-American physicist

Xiao-Gang Wen is a Chinese-American physicist. He is a Cecil and Ida Green Professor of Physics at the Massachusetts Institute of Technology and Distinguished Visiting Research Chair at the Perimeter Institute for Theoretical Physics. His expertise is in condensed matter theory in strongly correlated electronic systems. In Oct. 2016, he was awarded the Oliver E. Buckley Condensed Matter Prize.

<span class="mw-page-title-main">Subir Sachdev</span> Indian physicist

Subir Sachdev is Herchel Smith Professor of Physics at Harvard University specializing in condensed matter. He was elected to the U.S. National Academy of Sciences in 2014, and received the Lars Onsager Prize from the American Physical Society and the Dirac Medal from the ICTP in 2018. He was a co-editor of the Annual Review of Condensed Matter Physics from 2017–2019.

<span class="mw-page-title-main">Topological insulator</span> State of matter with insulating bulk but conductive boundary

A topological insulator is a material whose interior behaves as an electrical insulator while its surface behaves as an electrical conductor, meaning that electrons can only move along the surface of the material.

The toric code is a topological quantum error correcting code, and an example of a stabilizer code, defined on a two-dimensional spin lattice. It is the simplest and most well studied of the quantum double models. It is also the simplest example of topological order—Z2 topological order (first studied in the context of Z2 spin liquid in 1991). The toric code can also be considered to be a Z2 lattice gauge theory in a particular limit. It was introduced by Alexei Kitaev.

<span class="mw-page-title-main">Piers Coleman</span> British-American physicist

Piers Coleman is a British-born theoretical physicist, working in the field of theoretical condensed matter physics. Coleman is professor of physics at Rutgers University in New Jersey and at Royal Holloway, University of London.

In condensed matter physics, an AKLT model, also known as an Affleck-Kennedy-Lieb-Tasaki model is an extension of the one-dimensional quantum Heisenberg spin model. The proposal and exact solution of this model by Ian Affleck, Elliott H. Lieb, Tom Kennedy and Hal Tasaki provided crucial insight into the physics of the spin-1 Heisenberg chain. It has also served as a useful example for such concepts as valence bond solid order, symmetry-protected topological order and matrix product state wavefunctions.

In condensed matter physics, a quantum spin liquid is a phase of matter that can be formed by interacting quantum spins in certain magnetic materials. Quantum spin liquids (QSL) are generally characterized by their long-range quantum entanglement, fractionalized excitations, and absence of ordinary magnetic order.

In quantum many-body physics, topological degeneracy is a phenomenon in which the ground state of a gapped many-body Hamiltonian becomes degenerate in the limit of large system size such that the degeneracy cannot be lifted by any local perturbations.

Simone Severini is an Italian-born British computer scientist. He is currently Professor of Physics of Information at University College London, and Director of Quantum Computing at Amazon Web Services.

The Eastin–Knill theorem is a no-go theorem that states: "No quantum error correcting code can have a continuous symmetry which acts transversely on physical qubits". In other words, no quantum error correcting code can transversely implement a universal gate set, where a transversal logical gate is one that can be implemented on a logical qubit by the independent action of separate physical gates on corresponding physical qubits.

Tin-Lun "Jason" Ho is a Chinese-American theoretical physicist, specializing in condensed matter theory, quantum gases, and Bose-Einstein condensates. He is known for the Mermin-Ho relation.

Elbio Rubén Dagotto is an Argentinian-American theoretical physicist and academic. He is a distinguished professor in the department of physics and astronomy at the University of Tennessee, Knoxville, and Distinguished Scientist in the Materials Science and Technology Division at the Oak Ridge National Laboratory.

Fractional Chern insulators (FCIs) are lattice generalizations of the fractional quantum Hall effect that have been studied theoretically since the early 2010's. They were first predicted to exist in topological flat bands carrying Chern numbers. They can appear in topologically non-trivial band structures even in the absence of the large magnetic fields needed for the fractional quantum Hall effect. They promise physical realizations at lower magnetic fields, higher temperatures, and with shorter characteristic length scales compared to their continuum counterparts. FCIs were initially studied by adding electron-electron interactions to a fractionally filled Chern insulator, in one-body models where the Chern band is quasi-flat, at zero magnetic field. The FCIs exhibit a fractional quantized Hall conductance.

References

  1. Levin, Michael A. & Xiao-Gang Wen (12 January 2005). "String-net condensation: A physical mechanism for topological phases". Physical Review B. 71 (45110): 21. arXiv: cond-mat/0404617 . Bibcode:2005PhRvB..71d5110L. doi:10.1103/PhysRevB.71.045110. S2CID   51962817.
  2. Levin, Michael; Wen, Xiao-Gang (2005). "Photons and electrons as emergent phenomena". Rev. Mod. Phys. 77 (3): 871–879 [878]. arXiv: cond-mat/0407140 . Bibcode:2005RvMP...77..871L. doi:10.1103/RevModPhys.77.871. S2CID   117563047. loop quantum gravity appears to be a string net condensation ...
  3. Konopka, Tomasz; Markopoulou, Fotini; Smolin, Lee (2006). "Quantum Graphity". arXiv: hep-th/0611197 . We argue (but do not prove) that under certain conditions the spins in the system can arrange themselves in regular, lattice-like patterns at low temperatures.
  4. Konopka, Tomasz; Markopoulou, Fotini; Severini, Simone (May 2008). "Quantum graphity: A model of emergent locality". Phys. Rev. D. 77 (10): 19. arXiv: 0801.0861 . Bibcode:2008PhRvD..77j4029K. doi:10.1103/PhysRevD.77.104029. S2CID   6959359. The characterization of the string-condensed ground state is difficult but its excitations are expected to be that of a U(1) gauge theory, ... The two main differences between this model and the original string-net condensation model proposed by Levin and Wen are that in the present case the background lattice is dynamical and has hexagonal rather than square plaquettes.
  5. Bowles, Claire. "Have researchers found a new state of matter?". Eureka Alert. Retrieved 29 January 2012.
  6. Merali, Zeeya (2007-03-17). "The universe is a string-net liquid". New Scientist. 193 (2595): 8–9. doi:10.1016/s0262-4079(07)60640-x . Retrieved 29 January 2012.
  7. Read, N.; Sachdev, Subir (1 March 1991). "Large-Nexpansion for frustrated quantum antiferromagnets". Physical Review Letters. American Physical Society (APS). 66 (13): 1773–1776. Bibcode:1991PhRvL..66.1773R. doi:10.1103/physrevlett.66.1773. ISSN   0031-9007. PMID   10043303.
  8. Xiao-Gang Wen, Mean Field Theory of Spin Liquid States with Finite Energy Gaps and Topological Orders, Phys. Rev. B44, 2664 (1991).
  9. Kitaev, Alexei, Y.; Chris Laumann (2009). "Topological phases and quantum computation". arXiv: 0904.2771 [cond-mat.mes-hall].{{cite arXiv}}: CS1 maint: multiple names: authors list (link)
  10. Morimae, Tomoyuki (2012). "Quantum computational tensor network on string-net condensate". Physical Review A. 85 (6): 062328. arXiv: 1012.1000 . Bibcode:2012PhRvA..85f2328M. doi:10.1103/PhysRevA.85.062328. S2CID   118522495.