Leidenfrost effect

Last updated
Leidenfrost droplet Leidenfrost droplet.svg
Leidenfrost droplet
Demonstration of the Leidenfrost effect
Leidenfrost effect of a single drop of water Leidenfrost effect of a single drop of water.jpg
Leidenfrost effect of a single drop of water

The Leidenfrost effect is a physical phenomenon in which a liquid, close to a solid surface of another body that is significantly hotter than the liquid's boiling point, produces an insulating vapor layer that keeps the liquid from boiling rapidly. Because of this repulsive force, a droplet hovers over the surface, rather than making physical contact with it. The effect is named after the German doctor Johann Gottlob Leidenfrost, who described it in A Tract About Some Qualities of Common Water.

Contents

This is most commonly seen when cooking, when drops of water are sprinkled onto a hot pan. If the pan's temperature is at or above the Leidenfrost point, which is approximately 193 °C (379 °F) for water, the water skitters across the pan and takes longer to evaporate than it would take if the water droplets had been sprinkled onto a cooler pan.

Cooling performances of traditional structured surface and STA at T = 1000 degC Cooling performances of traditional structured surface and STA at T = 1000degC.gif
Cooling performances of traditional structured surface and STA at T = 1000 °C

Details

A video clip demonstrating the Leidenfrost effect
Excitation of normal modes in a drop of water during the Leidenfrost effect

The effect can be seen as drops of water are sprinkled onto a pan at various times as it heats up. Initially, as the temperature of the pan is just below 100 °C (212 °F), the water flattens out and slowly evaporates, or if the temperature of the pan is well below 100 °C (212 °F), the water stays liquid. As the temperature of the pan rises above 100 °C (212 °F), the water droplets hiss when touching the pan, and these droplets evaporate quickly. When the temperature exceeds the Leidenfrost point, the Leidenfrost effect appears. On contact with the pan, the water droplets bunch up into small balls of water and skitter around, lasting much longer than when the temperature of the pan was lower. This effect works until a much higher temperature causes any further drops of water to evaporate too quickly to cause this effect.

The effect happens because, at temperatures at or above the Leidenfrost point, the bottom part of the water droplet vaporizes immediately on contact with the hot pan. The resulting gas suspends the rest of the water droplet just above it, preventing any further direct contact between the liquid water and the hot pan. As steam has much poorer thermal conductivity than the metal pan, further heat transfer between the pan and the droplet is slowed down dramatically. This also results in the drop being able to skid around the pan on the layer of gas just under it.

Behavior of water on a hot plate. Graph shows heat transfer (flux) vs temperature. Leidenfrost effect occurs after transition boiling. Heat transfer leading to Leidenfrost effect for water at 1 atm.png
Behavior of water on a hot plate. Graph shows heat transfer (flux) vs temperature. Leidenfrost effect occurs after transition boiling.

The temperature at which the Leidenfrost effect appears is difficult to predict. Even if the volume of the drop of liquid stays the same, the Leidenfrost point may be quite different, with a complicated dependence on the properties of the surface, as well as any impurities in the liquid. Some research has been conducted into a theoretical model of the system, but it is quite complicated. [1]

The effect was also described by the Victorian steam boiler designer, William Fairbairn, in reference to its effect on massively reducing heat transfer from a hot iron surface to water, such as within a boiler. In a pair of lectures on boiler design, [2] he cited the work of Pierre Hippolyte Boutigny (1798–1884) and Professor Bowman of King's College, London, in studying this. A drop of water that was vaporized almost immediately at 168 °C (334 °F) persisted for 152 seconds at 202 °C (396 °F). Lower temperatures in a boiler firebox might evaporate water more quickly as a result; compare Mpemba effect. An alternative approach was to increase the temperature beyond the Leidenfrost point. Fairbairn considered this, too, and may have been contemplating the flash steam boiler, but considered the technical aspects insurmountable for the time.

The Leidenfrost point may also be taken to be the temperature for which the hovering droplet lasts longest. [3]

It has been demonstrated that it is possible to stabilize the Leidenfrost vapor layer of water by exploiting superhydrophobic surfaces. In this case, once the vapor layer is established, cooling never collapses the layer, and no nucleate boiling occurs; the layer instead slowly relaxes until the surface is cooled. [4]

Droplets of different liquids with different boiling temperatures will also exhibit a Leidenfrost effect with respect to each other and repel each other. [5]

The Leidenfrost effect has been used for the development of high sensitivity ambient mass spectrometry. Under the influence of the Leidenfrost condition, the levitating droplet does not release molecules, and the molecules are enriched inside the droplet. At the last moment of droplet evaporation, all the enriched molecules release in a short time period and thereby increase the sensitivity. [6]

A heat engine based on the Leidenfrost effect has been prototyped; it has the advantage of extremely low friction. [7]

The effect also applies when the surface is at room temperature but the liquid is cryogenic, allowing liquid nitrogen droplets to harmlessly roll off exposed skin. [8] Conversely, the inverse Leidenfrost effect lets drops of relatively warm liquid levitate on a bath of liquid nitrogen. [9]

Leidenfrost point

A water droplet experiencing Leidenfrost effect on a hot stove plate Water droplet Leidenfrost effect cropped.JPG
A water droplet experiencing Leidenfrost effect on a hot stove plate

The Leidenfrost point signifies the onset of stable film boiling. It represents the point on the boiling curve where the heat flux is at the minimum and the surface is completely covered by a vapor blanket. Heat transfer from the surface to the liquid occurs by conduction and radiation through the vapour. In 1756, Leidenfrost observed that water droplets supported by the vapor film slowly evaporate as they move about on the hot surface. As the surface temperature is increased, radiation through the vapor film becomes more significant and the heat flux increases with increasing excess temperature.

The minimum heat flux for a large horizontal plate can be derived from Zuber's equation, [3]

where the properties are evaluated at saturation temperature. Zuber's constant, , is approximately 0.09 for most fluids at moderate pressures.

Heat transfer correlations

The heat transfer coefficient may be approximated using Bromley's equation, [3]

where is the outside diameter of the tube. The correlation constant C is 0.62 for horizontal cylinders and vertical plates, and 0.67 for spheres. Vapor properties are evaluated at film temperature.

For stable film boiling on a horizontal surface, Berenson has modified Bromley's equation to yield, [10]

For vertical tubes, Hsu and Westwater have correlated the following equation, [10]

where m is the mass flow rate in at the upper end of the tube.

At excess temperatures above that at the minimum heat flux, the contribution of radiation becomes appreciable, and it becomes dominant at high excess temperatures. The total heat transfer coefficient is thus a combination of the two. Bromley has suggested the following equations for film boiling from the outer surface of horizontal tubes:

If ,

The effective radiation coefficient, can be expressed as,

where is the emissivity of the solid and is the Stefan–Boltzmann constant.

Pressure field in a Leidenfrost droplet

The equation for the pressure field in the vapor region between the droplet and the solid surface can be solved for using the standard momentum and continuity equations. For the sake of simplicity in solving, a linear temperature profile and a parabolic velocity profile are assumed within the vapor phase. The heat transfer within the vapor phase is assumed to be through conduction. With these approximations, the Navier–Stokes equations can be solved to get the pressure field. [11]

Leidenfrost temperature and surface tension effects

The Leidenfrost temperature is the property of a given set of solid–liquid pair. The temperature of the solid surface beyond which the liquid undergoes the Leidenfrost phenomenon is termed the Leidenfrost temperature. Calculation of the Leidenfrost temperature involves the calculation of the minimum film boiling temperature of a fluid. Berenson [12] obtained a relation for the minimum film boiling temperature from minimum heat flux arguments. While the equation for the minimum film boiling temperature, which can be found in the reference above, is quite complex, the features of it can be understood from a physical perspective. One critical parameter to consider is the surface tension. The proportional relationship between the minimum film boiling temperature and surface tension is to be expected, since fluids with higher surface tension need higher quantities of heat flux for the onset of nucleate boiling. Since film boiling occurs after nucleate boiling, the minimum temperature for film boiling should have a proportional dependence on the surface tension.

Henry developed a model for Leidenfrost phenomenon which includes transient wetting and microlayer evaporation. [13] Since the Leidenfrost phenomenon is a special case of film boiling, the Leidenfrost temperature is related to the minimum film boiling temperature via a relation which factors in the properties of the solid being used. While the Leidenfrost temperature is not directly related to the surface tension of the fluid, it is indirectly dependent on it through the film boiling temperature. For fluids with similar thermophysical properties, the one with higher surface tension usually has a higher Leidenfrost temperature.

For example, for a saturated water–copper interface, the Leidenfrost temperature is 257 °C (495 °F). The Leidenfrost temperatures for glycerol and common alcohols are significantly smaller because of their lower surface tension values (density and viscosity differences are also contributing factors.)

Reactive Leidenfrost effect

Reactive Leidenfrost effect of cellulose on silica, 750 degC (1,380 degF) Reactive Leidenfrost Effect with Cellulose.jpg
Reactive Leidenfrost effect of cellulose on silica, 750 °C (1,380 °F)

Non-volatile materials were discovered in 2015 to also exhibit a 'reactive Leidenfrost effect', whereby solid particles were observed to float above hot surfaces and skitter around erratically. [14] Detailed characterization of the reactive Leidenfrost effect was completed for small particles of cellulose (~0.5 mm) on high temperature polished surfaces by high speed photography. Cellulose was shown to decompose to short-chain oligomers which melt and wet smooth surfaces with increasing heat transfer associated with increasing surface temperature. Above 675 °C (1,247 °F), cellulose was observed to exhibit transition boiling with violent bubbling and associated reduction in heat transfer. Liftoff of the cellulose droplet (depicted at the right) was observed to occur above about 750 °C (1,380 °F), associated with a dramatic reduction in heat transfer. [14]

High speed photography of the reactive Leidenfrost effect of cellulose on porous surfaces (macroporous alumina) was also shown to suppress the reactive Leidenfrost effect and enhance overall heat transfer rates to the particle from the surface. The new phenomenon of a 'reactive Leidenfrost (RL) effect' was characterized by a dimensionless quantity, (φRL= τconvrxn), which relates the time constant of solid particle heat transfer to the time constant of particle reaction, with the reactive Leidenfrost effect occurring for 10−1< φRL< 10+1. The reactive Leidenfrost effect with cellulose will occur in numerous high temperature applications with carbohydrate polymers, including biomass conversion to biofuels, preparation and cooking of food, and tobacco use. [14]

The Leidenfrost effect has also been used as a means to promote chemical change of various organic liquids through their conversion by thermal decomposition into various products. Examples include decomposition of ethanol, [15] diethyl carbonate, [16] and glycerol. [17]

In Jules Verne's 1876 book Michael Strogoff , the protagonist is saved from being blinded with a hot blade by evaporating tears. [18]

In the 2009 season 7 finale of MythBusters , "Mini Myth Mayhem", the team demonstrated that a person can wet their hand and briefly dip it into molten lead without injury, using the Leidenfrost effect as the scientific basis. [19]

See also

Related Research Articles

<span class="mw-page-title-main">Evaporation</span> Type of vaporization of a liquid that occurs from its surface; surface phenomenon

Evaporation is a type of vaporization that occurs on the surface of a liquid as it changes into the gas phase. A high concentration of the evaporating substance in the surrounding gas significantly slows down evaporation, such as when humidity affects rate of evaporation of water. When the molecules of the liquid collide, they transfer energy to each other based on how they collide. When a molecule near the surface absorbs enough energy to overcome the vapor pressure, it will escape and enter the surrounding air as a gas. When evaporation occurs, the energy removed from the vaporized liquid will reduce the temperature of the liquid, resulting in evaporative cooling.

<span class="mw-page-title-main">Vapor pressure</span> Pressure exerted by a vapor in thermodynamic equilibrium

Vapor pressure or equilibrium vapor pressure is the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases at a given temperature in a closed system. The equilibrium vapor pressure is an indication of a liquid's thermodynamic tendency to evaporate. It relates to the balance of particles escaping from the liquid in equilibrium with those in a coexisting vapor phase. A substance with a high vapor pressure at normal temperatures is often referred to as volatile. The pressure exhibited by vapor present above a liquid surface is known as vapor pressure. As the temperature of a liquid increases, the attractive interactions between liquid molecules become less significant in comparison to the entropy of those molecules in the gas phase, increasing the vapor pressure. Thus, liquids with strong intermolecular interactions are likely to have smaller vapor pressures, with the reverse true for weaker interactions.

<span class="mw-page-title-main">Aerosol</span> Suspension of fine solid particles or liquid droplets in air or another gas

An aerosol is a suspension of fine solid particles or liquid droplets in air or another gas. Aerosols can be generated from natural or human causes. The term aerosol commonly refers to the mixture of particulates in air, and not to the particulate matter alone. Examples of natural aerosols are fog or mist, dust, forest exudates, and geyser steam. Examples of human caused aerosols include particulate air pollutants, mist from the discharge at hydroelectric dams, irrigation mist, perfume from atomizers, smoke, dust, sprayed pesticides, and medical treatments for respiratory illnesses. When a person inhales the contents of a vape pen or e-cigarette, they are inhaling an aerosol, too.

<span class="mw-page-title-main">Surface tension</span> Tendency of a liquid surface to shrink to reduce surface area

Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension is what allows objects with a higher density than water such as razor blades and insects to float on a water surface without becoming even partly submerged.

<span class="mw-page-title-main">Heat transfer</span> Transport of thermal energy in physical systems

Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.

The density of air or atmospheric density, denoted ρ, is the mass per unit volume of Earth's atmosphere. Air density, like air pressure, decreases with increasing altitude. It also changes with variations in atmospheric pressure, temperature and humidity. At 101.325 kPa (abs) and 20 °C, air has a density of approximately 1.204 kg/m3 (0.0752 lb/cu ft), according to the International Standard Atmosphere (ISA). At 101.325 kPa (abs) and 15 °C (59 °F), air has a density of approximately 1.225 kg/m3 (0.0765 lb/cu ft), which is about 1800 that of water, according to the International Standard Atmosphere (ISA). Pure liquid water is 1,000 kg/m3 (62 lb/cu ft).

<span class="mw-page-title-main">Psychrometrics</span> Study of gas-vapor mixtures

Psychrometrics is the field of engineering concerned with the physical and thermodynamic properties of gas-vapor mixtures.

<span class="mw-page-title-main">Superheated steam</span> Steam whose temperature can be decreased without immediately condensing

Superheated steam is steam at a temperature higher than its vaporization point at the absolute pressure where the temperature is measured.

<span class="mw-page-title-main">Wetting</span> Ability of a liquid to maintain contact with a solid surface

Wetting is the ability of a liquid to maintain contact with a solid surface, resulting from intermolecular interactions when the two are brought together. This happens in presence of a gaseous phase or another liquid phase not miscible with the first one. The degree of wetting (wettability) is determined by a force balance between adhesive and cohesive forces. There are two types of wetting: non-reactive wetting and reactive wetting.

<span class="mw-page-title-main">Marangoni effect</span> Physical phenomenon between two fluids

The Marangoni effect is the mass transfer along an interface between two phases due to a gradient of the surface tension. In the case of temperature dependence, this phenomenon may be called thermo-capillary convection.

<span class="mw-page-title-main">Weber number</span> Dimensionless number in fluid mechanics

The Weber number (We) is a dimensionless number in fluid mechanics that is often useful in analysing fluid flows where there is an interface between two different fluids, especially for multiphase flows with strongly curved surfaces. It is named after Moritz Weber (1871–1951). It can be thought of as a measure of the relative importance of the fluid's inertia compared to its surface tension. The quantity is useful in analyzing thin film flows and the formation of droplets and bubbles.

In the study of heat transfer, critical heat flux (CHF) is the heat flux at which boiling ceases to be an effective form of transferring heat from a solid surface to a liquid.

The Kelvin equation describes the change in vapour pressure due to a curved liquid–vapor interface, such as the surface of a droplet. The vapor pressure at a convex curved surface is higher than that at a flat surface. The Kelvin equation is dependent upon thermodynamic principles and does not allude to special properties of materials. It is also used for determination of pore size distribution of a porous medium using adsorption porosimetry. The equation is named in honor of William Thomson, also known as Lord Kelvin.

<span class="mw-page-title-main">Bubble (physics)</span> Globule of one substance in another, typically gas in a liquid

A bubble is a globule of a gas substance in a liquid. In the opposite case, a globule of a liquid in a gas, is called a drop. Due to the Marangoni effect, bubbles may remain intact when they reach the surface of the immersive substance.

In fluid thermodynamics, nucleate boiling is a type of boiling that takes place when the surface temperature is hotter than the saturated fluid temperature by a certain amount but where the heat flux is below the critical heat flux. For water, as shown in the graph below, nucleate boiling occurs when the surface temperature is higher than the saturation temperature by between 10 and 30 °C. The critical heat flux is the peak on the curve between nucleate boiling and transition boiling. The heat transfer from surface to liquid is greater than that in film boiling.

<span class="mw-page-title-main">Liquid</span> State of matter

A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a nearly constant volume independent of pressure. It is one of the four fundamental states of matter, and is the only state with a definite volume but no fixed shape.

<span class="mw-page-title-main">Köhler theory</span> Describes the process in which water vapor condenses and forms liquid cloud drops

Köhler theory describes the process in which water vapor condenses and forms liquid cloud drops, and is based on equilibrium thermodynamics. It combines the Kelvin effect, which describes the change in saturation vapor pressure due to a curved surface, and Raoult's Law, which relates the saturation vapor pressure to the solute. It is an important process in the field of cloud physics. It was initially published in 1936 by Hilding Köhler, Professor of Meteorology in the Uppsala University.

The vaporizing droplet problem is a challenging issue in fluid dynamics. It is part of many engineering situations involving the transport and computation of sprays: fuel injection, spray painting, aerosol spray, flashing releases… In most of these engineering situations there is a relative motion between the droplet and the surrounding gas. The gas flow over the droplet has many features of the gas flow over a rigid sphere: pressure gradient, viscous boundary layer, wake. In addition to these common flow features one can also mention the internal liquid circulation phenomenon driven by surface-shear forces and the boundary layer blowing effect.

The liquid droplet radiator (LDR) or previously termed liquid droplet stream radiator is a proposed lightweight radiator for the dissipation of waste heat generated by power plants, propulsion or spacecraft systems in space.

The removal of heat from nuclear reactors is an essential step in the generation of energy from nuclear reactions. In nuclear engineering there are a number of empirical or semi-empirical relations used for quantifying the process of removing heat from a nuclear reactor core so that the reactor operates in the projected temperature interval that depends on the materials used in the construction of the reactor. The effectiveness of removal of heat from the reactor core depends on many factors, including the cooling agents used and the type of reactor. Common liquid coolants for nuclear reactors include: deionized water, heavy water, the lighter alkaline metals, lead or lead-based eutectic alloys like lead-bismuth, and NaK, a eutectic alloy of sodium and potassium. Gas cooled reactors operate with coolants like carbon dioxide, helium or nitrogen but some very low powered research reactors have even been air-cooled with Chicago Pile 1 relying on natural convection of the surrounding air to remove the negligible thermal power output. There is ongoing research into using supercritical fluids as reactor coolants but thus far neither the supercritical water reactor nor a reactor cooled with supercritical Carbon Dioxide nor any other kind of supercritical-fluid-cooled reactor has ever been built.

References

  1. Bernardin, John D.; Mudawar, Issam (2002). "A Cavity Activation and Bubble Growth Model of the Leidenfrost Point". Journal of Heat Transfer. 124 (5): 864–74. doi:10.1115/1.1470487.
  2. William Fairbairn (1851). Two Lectures: The Construction of Boilers, and on Boiler Explosions, with the means of prevention. Archived from the original on 2017-11-23.[ page needed ]
  3. 1 2 3 Incropera; DeWitt; Bergman; Lavine (2006). Fundamentals of Heat and Mass Transfer (6th ed.). pp. 325–330. ISBN   0-471-45728-0.
  4. Vakarelski, Ivan U.; Patankar, Neelesh A.; Marston, Jeremy O.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T. (2012). "Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces". Nature. 489 (7415): 274–7. Bibcode:2012Natur.489..274V. doi:10.1038/nature11418. PMID   22972299. S2CID   4411432.
  5. Pacheco-Vázquez, F.; Ledesma-Alonso, R.; Palacio-Rangel, J. L.; Moreau, F. (12 November 2021). "Triple Leidenfrost Effect: Preventing Coalescence of Drops on a Hot Plate". Physical Review Letters. 127 (20): 204501. arXiv: 2107.00438 . Bibcode:2021PhRvL.127t4501P. doi:10.1103/PhysRevLett.127.204501. PMID   34860033. S2CID   235694660.
  6. Subhrakanti Saha; Lee Chuin Chen; Mridul Kanti Mandal; Kenzo Hiraoka (March 2013). "Leidenfrost Phenomenon-assisted Thermal Desorption (LPTD) and Its Application to Open Ion Sources at Atmospheric Pressure Mass Spectrometry". Journal of the American Society for Mass Spectrometry. 24 (3): 341–7. Bibcode:2013JASMS..24..341S. doi:10.1007/s13361-012-0564-y. PMID   23423791. S2CID   39368022.
  7. Wells, Gary G.; Ledesma-Aguilar, Rodrigio; McHale, Glen; Sefiane, Khellil (3 March 2015). "A sublimation heat engine". Nature Communications. 6: 6390. Bibcode:2015NatCo...6.6390W. doi:10.1038/ncomms7390. PMC   4366496 . PMID   25731669.
  8. "Who What Why: How dangerous is liquid nitrogen?". BBC News. 8 October 2012.
  9. Adda-Bedia, M.; Kumar, S.; Lechenault, F.; Moulinet, S.; Schillaci, M.; Vella, D. (2016). "Inverse Leidenfrost Effect: Levitating Drops on Liquid Nitrogen". Langmuir. 32 (17): 4179–4188. doi:10.1021/acs.langmuir.6b00574. PMID   27054550. S2CID   21732968.
  10. 1 2 Welty, James R.; Wicks, Charles E.; Wilson, Robert E.; Rorrer, Gregory L. (2008). Fundamentals of Momentum, Heat and Mass transfer (5th ed.). John Wiley and Sons. p. 327. ISBN   978-0-470-12868-8.
  11. Carey, Van P. (2020). Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, Third Edition. CRC Press. doi:10.1201/9780429082221. ISBN   978-1-4987-1663-5. S2CID   243345698.[ page needed ]
  12. Berenson, P. J. (1 August 1961). "Film-Boiling Heat Transfer From a Horizontal Surface". Journal of Heat Transfer. 83 (3): 351–356. doi:10.1115/1.3682280.
  13. Henry, R.E. (1972). "Correlation for the minimum wall superheat in film boiling". Transactions of the American Nuclear Society. 15 (1): 420–421. OCLC   4434452303. OSTI   4694181.
  14. 1 2 3 Teixeira, Andrew R.; Krumm, Christoph; Vinter, Katherine P.; Paulsen, Alex D.; Zhu, Cheng; Maduskar, Saurabh; Joseph, Kristeen E.; Greco, Katharine; Stelatto, Michael; Davis, Eric; Vincent, Brendon; Hermann, Richard; Suszynski, Wieslaw; Schmidt, Lanny D.; Fan, Wei; Rothstein, Jonathan P.; Dauenhauer, Paul J. (September 2015). "Reactive Liftoff of Crystalline Cellulose Particles". Scientific Reports. 5 (1): 11238. Bibcode:2015NatSR...511238T. doi:10.1038/srep11238. PMC   4460903 . PMID   26057818.
  15. Avedisian, C. Thomas; Kuo, Wei-Chih; Tsang, Wing; Lowery, Adam (20 June 2018). "A Film Boiling Study of Ethanol Pyrolysis". Industrial & Engineering Chemistry Research. 57 (24): 8334–8340. doi:10.1021/acs.iecr.8b00770.
  16. Thomas Avedisian, C.; Kuo, Wei-Chih; Tsang, Wing; Lowery, Adam (1 June 2018). "High Temperature Thermal Decomposition of Diethyl Carbonate by Pool Film Boiling". Journal of Heat Transfer. 140 (6): 061501. doi:10.1115/1.4038572.
  17. Sharma, Pushan; Avedisian, C. Thomas; Brunson, Jordan D.; Tsang, Wing (1 August 2019). "Decomposition by film boiling heat transfer of glycerol". International Journal of Heat and Mass Transfer. 139: 873–880. doi: 10.1016/j.ijheatmasstransfer.2019.05.005 . S2CID   191155524.
  18. Quéré, David (3 January 2013). "Leidenfrost Dynamics". Annual Review of Fluid Mechanics. 45 (1): 197–215. Bibcode:2013AnRFM..45..197Q. doi:10.1146/annurev-fluid-011212-140709.
  19. "Mini-Myth Mayhem". MythBusters. Season 7. Episode 136. December 28, 2009. Discovery Channel.