Programmable matter

Last updated

Programmable matter is matter which has the ability to change its physical properties (shape, density, moduli, conductivity, optical properties, etc.) in a programmable fashion, based upon user input or autonomous sensing. Programmable matter is thus linked to the concept of a material which inherently has the ability to perform information processing.

Contents

History

Programmable matter is a term originally coined in 1991 by Toffoli and Margolus to refer to an ensemble of fine-grained computing elements arranged in space. [1] Their paper describes a computing substrate that is composed of fine-grained compute nodes distributed throughout space which communicate using only nearest neighbor interactions. In this context, programmable matter refers to compute models similar to cellular automata and lattice gas automata. [2] The CAM-8 architecture is an example hardware realization of this model. [3] This function is also known as "digital referenced areas" (DRA) in some forms of self-replicating machine science. [4]

In the early 1990s, there was a significant amount of work in reconfigurable modular robotics with a philosophy similar to programmable matter. [4]

As semiconductor technology, nanotechnology, and self-replicating machine technology have advanced, the use of the term programmable matter has changed to reflect the fact that it is possible to build an ensemble of elements which can be "programmed" to change their physical properties in reality, not just in simulation. Thus, programmable matter has come to mean "any bulk substance which can be programmed to change its physical properties."

In the summer of 1998, in a discussion on artificial atoms and programmable matter, Wil McCarthy and G. Snyder coined the term "quantum wellstone" (or simply "wellstone") to describe this hypothetical but plausible form of programmable matter. McCarthy has used the term in his fiction.

In 2002, Seth Goldstein and Todd Mowry started the claytronics project at Carnegie Mellon University to investigate the underlying hardware and software mechanisms necessary to realize programmable matter.

In 2004, the DARPA Information Science and Technology group (ISAT) examined the potential of programmable matter. This resulted in the 2005–2006 study "Realizing Programmable Matter", which laid out a multi-year program for the research and development of programmable matter.

In 2007, programmable matter was the subject of a DARPA research solicitation and subsequent program. [5] [6]

From 2016 to 2022, the ANR has funded several research programs coordinated by Julien Bourgeois and Benoit Piranda at the FEMTO-ST Institute, which is taking the lead in the Claytronics project initiated by Intel and Carnegie Mellon University. [7]

Approaches

A 'simple' programmable matter where the programmable element is external to the material itself. Magnetized non-Newtonian fluid, forming support columns which resist impacts and sudden pressure.

In one school of thought, the programming could be external to the material and might be achieved by the "application of light, voltage, electric or magnetic fields, etc." ( McCarthy 2006 ). For example, a liquid crystal display is a form of programmable matter. A second school of thought is that the individual units of the ensemble can compute and the result of their computation is a change in the ensemble's physical properties. An example of this more ambitious form of programmable matter is claytronics.

There are many proposed implementations of programmable matter. Scale is one key differentiator between different forms of programmable matter. At one end of the spectrum, reconfigurable modular robotics pursues a form of programmable matter where the individual units are in the centimeter size range. [4] [8] [9] At the nanoscale end of the spectrum, there are a tremendous number of different bases for programmable matter, ranging from shape changing molecules [10] to quantum dots. Quantum dots are in fact often referred to as artificial atoms. In the micrometer to sub-millimeter range examples include MEMS-based units, cells created using synthetic biology, and the utility fog concept.

An important sub-group of programmable matter are robotic materials, which combine the structural aspects of a composite with the affordances offered by tight integration of sensors, actuators, computation, and communication, [11] while foregoing reconfiguration by particle motion.

Examples

There are many conceptions of programmable matter, and thus many discrete avenues of research using the name. Below are some specific examples of programmable matter.

"Solid-liquid phase-change pumping"

Shape-changing and locomotion of solid objects are possible with solid-liquid phase change pumping. [12] This approach allows deforming objects into any intended shape with sub-millimetre resolution and freely changing their topology.

"Simple"

These include materials that can change their properties based on some input, but do not have the ability to do complex computation by themselves.

Complex fluids

The physical properties of several complex fluids can be modified by applying a current or voltage, as is the case with liquid crystals.

Metamaterials

Metamaterials are artificial composites that can be controlled to react in ways that do not occur in nature. One example developed by David Smith and then by John Pendry and David Schuri is of a material that can have its index of refraction tuned so that it can have a different index of refraction at different points in the material. If tuned properly, this could result in an invisibility cloak.

A further example of programmable -mechanical- metamaterial is presented by Bergamini et al. [13] Here, a pass band within the phononic bandgap is introduced, by exploiting variable stiffness of piezoelectric elements linking aluminum stubs to the aluminum plate to create a phononic crystal as in the work of Wu et al. [14] The piezoelectric elements are shunted to ground over synthetic inductors. Around the resonance frequency of the LC circuit formed by the piezoelectric and the inductors, the piezoelectric elements exhibit near zero stiffness, thus effectively disconnecting the stubs from the plate. This is considered an example of programmable mechanical metamaterial. [13]

In 2021, Chen et al. demonstrated a mechanical metamaterial whose unit cells can each store a binary digit analogous to a bit inside a hard disk drive. [15] Similarly, these mechanical unit cells are programmed through the interaction between two electromagnetic coils in the Maxwell configuration, and an embedded magnetorheological elastomer. Different binary states are associated with different stress-strain response of the material.

Shape-changing molecules

An active area of research is in molecules that can change their shape, as well as other properties, in response to external stimuli. These molecules can be used individually or en masse to form new kinds of materials. For example, J Fraser Stoddart's group at UCLA has been developing molecules that can change their electrical properties. [10]

Electropermanent magnets

An electropermanent magnet is a type of magnet which consists of both an electromagnet and a dual material permanent magnet, in which the magnetic field produced by the electromagnet is used to change the magnetization of the permanent magnet. The permanent magnet consists of magnetically hard and soft materials, of which only the soft material can have its magnetization changed. When the magnetically soft and hard materials have opposite magnetizations the magnet has no net field, and when they are aligned the magnet displays magnetic behaviour. [16]

They allow creating controllable permanent magnets where the magnetic effect can be maintained without requiring a continuous supply of electrical energy. For these reasons, electropermanent magnets are essential components of the research studies aiming to build programmable magnets that can give rise to self-building structures. [16] [17]

Robotics-based approaches

Self-reconfiguring modular robotics

Self-reconfiguring modular robotics involves a group of basic robot modules working together to dynamically form shapes and create behaviours suitable for many tasks, similar to programmable matter. SRCMR aims to offer significant improvement to many kinds of objects or systems by introducing many new possibilities. For example: 1. Most important is the incredible flexibility that comes from the ability to change the physical structure and behavior of a solution by changing the software that controls modules. 2. The ability to self-repair by automatically replacing a broken module will make SRCMR solution incredibly resilient. 3. Reducing the environmental footprint by reusing the same modules in many different solutions. Self-reconfiguring modular robotics enjoys a vibrant and active research community. [18]

Claytronics

Claytronics is an emerging field of engineering concerning reconfigurable nanoscale robots ('claytronic atoms', or catoms) designed to form much larger scale machines or mechanisms. The catoms will be sub-millimeter computers that will eventually have the ability to move around, communicate with other computers, change color, and electrostatically connect to other catoms to form different shapes.

Cellular automata

Cellular automata are a useful concept to abstract some of the concepts of discrete units interacting to give a desired overall behavior.

Quantum wells

Quantum wells can hold one or more electrons. Those electrons behave like artificial atoms which, like real atoms, can form covalent bonds, but these are extremely weak. Because of their larger sizes, other properties are also widely different.

Synthetic biology

A ribosome is a biological machine that utilizes protein dynamics on nanoscales to synthesize proteins. Protein translation.gif
A ribosome is a biological machine that utilizes protein dynamics on nanoscales to synthesize proteins.

Synthetic biology is a field that aims to engineer cells with "novel biological functions."[ citation needed ] Such cells are usually used to create larger systems (e.g., biofilms) which can be "programmed" utilizing synthetic gene networks such as genetic toggle switches, to change their color, shape, etc. Such bioinspired approaches to materials production has been demonstrated, using self-assembling bacterial biofilm materials that can be programmed for specific functions, such as substrate adhesion, nanoparticle templating, and protein immobilization. [19]

See also

Related Research Articles

<span class="mw-page-title-main">Condensed matter physics</span> Branch of physics

Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases that arise from electromagnetic forces between atoms and electrons. More generally, the subject deals with condensed phases of matter: systems of many constituents with strong interactions among them. More exotic condensed phases include the superconducting phase exhibited by certain materials at extremely low cryogenic temperatures, the ferromagnetic and antiferromagnetic phases of spins on crystal lattices of atoms, the Bose–Einstein condensates found in ultracold atomic systems, and liquid crystals. Condensed matter physicists seek to understand the behavior of these phases by experiments to measure various material properties, and by applying the physical laws of quantum mechanics, electromagnetism, statistical mechanics, and other physics theories to develop mathematical models and predict the properties of extremely large groups of atoms.

<span class="mw-page-title-main">Self-replication</span> Type of behavior of a dynamical system

Self-replication is any behavior of a dynamical system that yields construction of an identical or similar copy of itself. Biological cells, given suitable environments, reproduce by cell division. During cell division, DNA is replicated and can be transmitted to offspring during reproduction. Biological viruses can replicate, but only by commandeering the reproductive machinery of cells through a process of infection. Harmful prion proteins can replicate by converting normal proteins into rogue forms. Computer viruses reproduce using the hardware and software already present on computers. Self-replication in robotics has been an area of research and a subject of interest in science fiction. Any self-replicating mechanism which does not make a perfect copy (mutation) will experience genetic variation and will create variants of itself. These variants will be subject to natural selection, since some will be better at surviving in their current environment than others and will out-breed them.

<span class="mw-page-title-main">State of matter</span> Distinct forms that matter take on

In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. Many intermediate states are known to exist, such as liquid crystal, and some states only exist under extreme conditions, such as Bose–Einstein condensates and Fermionic condensates, neutron-degenerate matter, and quark–gluon plasma. For a list of exotic states of matter, see the article List of states of matter.

<span class="mw-page-title-main">Metamaterial</span> Materials engineered to have properties that have not yet been found in nature

A metamaterial is any material engineered to have a property that is rarely observed in naturally occurring materials. They are made from assemblies of multiple elements fashioned from composite materials such as metals and plastics. These materials are usually arranged in repeating patterns, at scales that are smaller than the wavelengths of the phenomena they influence. Metamaterials derive their properties not from the properties of the base materials, but from their newly designed structures. Their precise shape, geometry, size, orientation and arrangement gives them their smart properties capable of manipulating electromagnetic waves: by blocking, absorbing, enhancing, or bending waves, to achieve benefits that go beyond what is possible with conventional materials.

Smart materials, also called intelligent or responsive materials, are designed materials that have one or more properties that can be significantly changed in a controlled fashion by external stimuli, such as stress, moisture, electric or magnetic fields, light, temperature, pH, or chemical compounds. Smart materials are the basis of many applications, including sensors and actuators, or artificial muscles, particularly as electroactive polymers (EAPs).

<span class="mw-page-title-main">Spin ice</span>

A spin ice is a magnetic substance that does not have a single minimal-energy state. It has magnetic moments (i.e. "spin") as elementary degrees of freedom which are subject to frustrated interactions. By their nature, these interactions prevent the moments from exhibiting a periodic pattern in their orientation down to a temperature much below the energy scale set by the said interactions. Spin ices show low-temperature properties, residual entropy in particular, closely related to those of common crystalline water ice. The most prominent compounds with such properties are dysprosium titanate (Dy2Ti2O7) and holmium titanate (Ho2Ti2O7). The orientation of the magnetic moments in spin ice resembles the positional organization of hydrogen atoms (more accurately, ionized hydrogen, or protons) in conventional water ice (see figure 1).

<span class="mw-page-title-main">Material</span> Substance or mixture of substances that constitutes an object

A material is a substance or mixture of substances that constitutes an object. Materials can be pure or impure, living or non-living matter. Materials can be classified on the basis of their physical and chemical properties, or on their geological origin or biological function. Materials science is the study of materials, their properties and their applications.

Modular self-reconfiguring robotic systems or self-reconfigurable modular robots are autonomous kinematic machines with variable morphology. Beyond conventional actuation, sensing and control typically found in fixed-morphology robots, self-reconfiguring robots are also able to deliberately change their own shape by rearranging the connectivity of their parts, in order to adapt to new circumstances, perform new tasks, or recover from damage.

<span class="mw-page-title-main">Terahertz metamaterial</span>

A terahertz metamaterial is a class of composite metamaterials designed to interact at terahertz (THz) frequencies. The terahertz frequency range used in materials research is usually defined as 0.1 to 10 THz.

<span class="mw-page-title-main">Acoustic metamaterial</span> Material designed to manipulate sound waves

An acoustic metamaterial, sonic crystal, or phononic crystal is a material designed to control, direct, and manipulate sound waves or phonons in gases, liquids, and solids. Sound wave control is accomplished through manipulating parameters such as the bulk modulus β, density ρ, and chirality. They can be engineered to either transmit, or trap and amplify sound waves at certain frequencies. In the latter case, the material is an acoustic resonator.

<span class="mw-page-title-main">Photonic metamaterial</span> Type of electromagnetic metamaterial

A photonic metamaterial (PM), also known as an optical metamaterial, is a type of electromagnetic metamaterial, that interacts with light, covering terahertz (THz), infrared (IR) or visible wavelengths. The materials employ a periodic, cellular structure.

Natural computing, also called natural computation, is a terminology introduced to encompass three classes of methods: 1) those that take inspiration from nature for the development of novel problem-solving techniques; 2) those that are based on the use of computers to synthesize natural phenomena; and 3) those that employ natural materials to compute. The main fields of research that compose these three branches are artificial neural networks, evolutionary algorithms, swarm intelligence, artificial immune systems, fractal geometry, artificial life, DNA computing, and quantum computing, among others.

Spin engineering describes the control and manipulation of quantum spin systems to develop devices and materials. This includes the use of the spin degrees of freedom as a probe for spin based phenomena. Because of the basic importance of quantum spin for physical and chemical processes, spin engineering is relevant for a wide range of scientific and technological applications. Current examples range from Bose–Einstein condensation to spin-based data storage and reading in state-of-the-art hard disk drives, as well as from powerful analytical tools like nuclear magnetic resonance spectroscopy and electron paramagnetic resonance spectroscopy to the development of magnetic molecules as qubits and magnetic nanoparticles. In addition, spin engineering exploits the functionality of spin to design materials with novel properties as well as to provide a better understanding and advanced applications of conventional material systems. Many chemical reactions are devised to create bulk materials or single molecules with well defined spin properties, such as a single-molecule magnet. The aim of this article is to provide an outline of fields of research and development where the focus is on the properties and applications of quantum spin.

<span class="mw-page-title-main">Altius Space Machines</span> American aerospace company

Altius Space Machines is a subsidiary company of Voyager Space Holdings, based in Broomfield, CO dedicated to engineering the future in Aerospace.

An electropermanent magnet or EPM is a type of permanent magnet in which the external magnetic field can be switched on or off by a pulse of electric current in a wire winding around part of the magnet. The magnet consists of two sections, one of "hard" magnetic material and one of "soft" material. The direction of magnetization in the latter piece can be switched by a pulse of current in a wire winding about the former. When the magnetically soft and hard materials have opposing magnetizations, the magnet produces no net external field across its poles, while when their direction of magnetization is aligned the magnet produces an external magnetic field.

Quantum metamaterials extend the science of metamaterials to the quantum level. They can control electromagnetic radiation by applying the rules of quantum mechanics. In the broad sense, a quantum metamaterial is a metamaterial in which certain quantum properties of the medium must be taken into account and whose behaviour is thus described by both Maxwell's equations and the Schrödinger equation. Its behaviour reflects the existence of both EM waves and matter waves. The constituents can be at nanoscopic or microscopic scales, depending on the frequency range .

Robotic materials are composite materials that combine sensing, actuation, computation, and communication in a repeatable or amorphous pattern. Robotic materials can be considered computational metamaterials in that they extend the original definition of a metamaterial as "macroscopic composites having a man-made, three-dimensional, periodic cellular architecture designed to produce an optimized combination, not available in nature, of two or more responses to specific excitation" by being fully programmable. That is, unlike in a conventional metamaterial, the relationship between a specific excitation and response is governed by sensing, actuation, and a computer program that implements the desired logic.

<span class="mw-page-title-main">Alper Erturk</span>

Alper Erturk is a mechanical engineer and the Woodruff Professor in the George W. Woodruff School of Mechanical Engineering at Georgia Institute of Technology.

This glossary of nanotechnology is a list of definitions of terms and concepts relevant to nanotechnology, its sub-disciplines, and related fields.

References

  1. Toffoli, Tommaso; Margolus, Norman (1991). "Programmable matter: concepts and realization". Physica D. 47 (1–2): 263–272. Bibcode:1991PhyD...47..263T. doi:10.1016/0167-2789(91)90296-L.
  2. Rothman, D.H.; Zaleski, S. (2004) [1997]. Lattice Gas Cellular Automata . Cambridge University Press. ISBN   9780521607605.
  3. "CAM8: a Parallel, Uniform, Scalable Architecture for Cellular Automata Experimentation". Ai.mit.edu. Retrieved 2013-04-10.
  4. 1 2 3 http://www.geocities.com/charles_c_22191/temporarypreviewfile.html?1205202563050 [ dead link ]
  5. "DARPA research solicitation". Archived from the original on July 15, 2009.
  6. DARPA Strategic Thrusts: Programmable Matter Archived December 12, 2010, at the Wayback Machine
  7. "Hardware and software for creating programmable matter – ProgrammableMatter". anr.fr.
  8. Research
  9. "Mark Yim - GRASP Lab @ Penn". www.robotics.upenn.edu. Archived from the original on 16 November 2005. Retrieved 17 January 2022.
  10. 1 2 "UCLA Chemistry and Biochemistry". Stoddart.chem.ucla.edu. Archived from the original on 2004-10-12. Retrieved 2013-04-10.
  11. McEvoy, M. A.; Correll, N. (2015-03-20). "Materials that couple sensing, actuation, computation, and communication". Science. 347 (6228). American Association for the Advancement of Science (AAAS). doi: 10.1126/science.1261689 . ISSN   0036-8075. PMID   25792332. S2CID   206563151.
  12. Kaya, Kerem; Kravchenko, Alexander; Scarpellini, Claudia; Iseri, Emre; Kragic, Danica; van der Wijngaart, Wouter (2023). "Programmable Matter with Free and High-Resolution Transfiguration and Locomotion". Advanced Functional Materials. doi: 10.1002/adfm.202307105 .
  13. 1 2 Bergamini, Andrea; Delpero, Tommaso; De Simoni, Luca; Di Lillo, Luigi; Ruzzene, Massimo; Ermanni, Paolo (2014). "Phononic Crystal with Adaptive Connectivity". Advanced Materials. 2 (9): 1343–1347. doi:10.1002/adma.201305280. ISSN   0935-9648. PMID   24734298. S2CID   23402889.
  14. Wu, Tsung-Tsong; Huang, Zi-Gui; Tsai, Tzu-Chin; Wu, Tzung-Chen (2008). "Evidence of complete band gap and resonances in a plate with periodic stubbed surface". Applied Physics Letters. 93 (11): 111902. Bibcode:2008ApPhL..93k1902W. doi:10.1063/1.2970992. ISSN   0003-6951.
  15. Chen, Tian; Pauly, Mark; Reis M., Pedro (2021). "A reprogrammable mechanical metamaterial with stable memory". Nature. 589 (7842): 386–390. Bibcode:2021Natur.589..386C. doi:10.1038/s41586-020-03123-5. ISSN   1476-4687. PMID   33473228. S2CID   231665050.
  16. 1 2 Deyle, Travis (2010). "Electropermanent Magnets: Programmable Magnets with Zero Static Power Consumption Enable Smallest Modular Robots Yet". HiZook. Retrieved 2012-04-06.
  17. Hardesty, Larry (2012). "Self-sculpting sand". MIT. Retrieved 2012-04-06.
  18. ( Yim et al. 2007 , pp. 43–52) An overview of recent work and challenges
  19. Nguyen, Peter (Sep 17, 2014). "Programmable biofilm-based materials from engineered curli nanofibres". Nature Communications. 5: 4945. Bibcode:2014NatCo...5.4945N. doi: 10.1038/ncomms5945 . PMID   25229329.

Further reading