Electropermanent magnet

Last updated

An electropermanent magnet or EPM is a type of permanent magnet in which the external magnetic field can be switched on or off by a pulse of electric current in a wire winding around part of the magnet. The magnet consists of two sections, one of "hard" (high coercivity) magnetic material and one of "soft" (low coercivity) material. The direction of magnetization in the latter piece can be switched by a pulse of current in a wire winding about the former. When the magnetically soft and hard materials have opposing magnetizations, the magnet produces no net external field across its poles, while when their direction of magnetization is aligned the magnet produces an external magnetic field. [1] [2]

Contents

Before the electropermanent magnet was invented,[ when? ] applications needing a controllable magnetic field required electromagnets, which consume large amounts of power when operating. Electropermanent magnets require no power source to maintain the magnetic field. Electropermanent magnets made with powerful rare-earth magnets are used as industrial lifting (tractive) magnets to lift heavy ferrous metal objects; when the object reaches its destination the magnet can be switched off, releasing the object. Programmable magnets are also being researched as a means of creating self-building structures. [2] [3]

Description

An electropermanent magnet is a special configuration of magnetic materials where the external magnetic field can be turned on and off by applying a current pulse. The EPM is based on a common magnetic configuration called magnetic latch (right picture). A general example of this configuration assembly is built by a permanent magnet block with two plates of soft magnetic materials (generally iron alloys) on each side of the block. Those two plates exceed the dimensions of the permanent magnet. Because the plates had a higher permeability than the air, they will concentrate the magnetic flux of the permanent magnet. When a third (external) soft magnet plate is placed touching the other two plates, the magnetic flux will flow confined in the soft magnetic plates creating a closed magnetic circuit and the magnetic field produced by the magnet will be maximum (approximately the magnet remanence). [2] [4]

An EPM has at least two permanent magnets in between the plates. The magnetic field generated by the EPM is produced by the permanent magnets not by electric currents and this is the main difference with the electromagnets. An EPM uses only a pulse of current to magnetize one of the magnet in a desired direction (turning on and off the external magnetic field of the latch). After changing the direction of the magnet no current is needed and the field will return to depends on the permanent magnets.

Electropermanent magnet principle

In order to explain the principle of the EPM, the configuration on the following picture is presented. Two permanent magnets are assembled with two U-shape (horseshoe) iron bars. If the north pole of both magnets are pointing up we will have the configuration described on the left: The iron U in the top will see two norths on its ends and will concentrate the flux lines but it won't be able to contain the magnetic flux and the flux will flow through the air and will try to find the other iron U. In a general schema, the iron U on top will become a north pole of the big magnet and the bottom iron U will become a south pole. In this configuration we can say there is big magnet ON.

Representation of a magnetic latch configuration that can turn the external magnetic field ON and OFF by rotating one of the magnets. EPM 2.png
Representation of a magnetic latch configuration that can turn the external magnetic field ON and OFF by rotating one of the magnets.

If we rotate one of the hard magnets (north pole point down), the iron U on top will see a north pole and a south pole. The other iron U will see exactly the opposite. In this way almost all the magnetic flux will be concentrated inside both iron U's creating a close circuit for the magnetic field (because the high permeability of the iron). Having all the flux confined inside the structure, the magnetic flux outside became almost nonexistent. In this configuration we can say the big magnet is OFF.

Now we can move forward and instead of mechanically rotating one of the magnets we can flip the direction of its magnetization. To do it we can build the configuration on the following picture:

EPM principle. Representation of a magnetic latch configuration where the external magnetic field can be turned ON and OFF by reversing the magnetization direction of one of the magnets by action of the current in the coil. EPM 3.png
EPM principle. Representation of a magnetic latch configuration where the external magnetic field can be turned ON and OFF by reversing the magnetization direction of one of the magnets by action of the current in the coil.

A coil is wound around one of the magnets in a way that if we inject enough current (in a pulse) in the solenoid the generated magnetic field inside will be higher than the intrinsic coercivity of the magnet (). If this is the case the permanent magnet will be magnetized in the direction of the field inside the solenoid. Applying the same pulse of current in the opposite direction will lead to magnetize the magnet in the opposite direction. Therefore, we have the same behavior as when we mechanically rotate the magnet. This configuration is the concept of electropermanent magnet: Using a pulse of current we reverse the magnetization direction of one of the magnets and we will turn ON and OFF the external magnetic field.

It is important to mention that both magnets can be wound in the same coil, but it is necessary that one of the magnets have much lower intrinsic coercivity than the other in order to flip their magnetization direction without changing the other's direction of magnetization. During this explanation we use one magnet made of NdFeB and the other made of AlNiCo because both materials had the same remanence (around 1.3T) but AlNiCo has a lower intrinsic coercivity of 50kA/m while NdFeB has an intrinsic coercivity of 1120kA/m.

Magnetic circuit analysis

Using a magnetic circuit analysis we can represent a simple EPM using the following schematic:

Detailed and simplified schematic of the EPM's magnetic circuit. EPM 4.png
Detailed and simplified schematic of the EPM's magnetic circuit.

We present two permanent magnets made of different materials (AlNiCo and NdFeB) and the soft magnet is made of Hiperco. [5] An additional segment of hiperco is shown to close the circuit and obtains better calculated results. An air gap is included (One for each side of the EPM) for calculating the magnetic flux and field generated in the air as function of the gap distance. This will lead to obtain an expression of the EPM's force (exerted over the additional segment of hiperco) as a function of the separation distance.

Design concept of an EPM. EPM 5.png
Design concept of an EPM.

For the calculation of the values of the components in the circuit we will assume that all the areas in the flow have the same dimensions. If the selected magnets had a cylindrical shape then the area of the flow for the magnets will be and the hiperco blocks will have a square section of side in order to have the same area.

For the AlNiCo magnet we can calculate the magnetomotive force (MMF), the reluctance and the magnetic flow over that magnet as:

For the NdFeB magnet we can calculate the magnetomotive force (MMF), the reluctance and the magnetic flow over that magnet in the same way:

Expressions for the reluctance of the gap and the hiperco can be also generated:

But the magnetic circuit can be simplified by using electric source transformations and considering all the hiperco in only one big reluctance (mainly because the value of those small pieces of reluctance are negligible compared with the reluctance of the permanent magnets). A simplified version of the magnetic circuit was presented on the right in the picture above:

An equivalent reluctance () can be calculated to replace the magnets:

For the equivalent MMF, there are going to be two different values. One when the EPM is ON and both flows are in the same direction (addition):

EPM ON:

And another one when the EPM is OFF and the magnetic fluxes are in opposite direction (subtraction)

EPM OFF:

Knowing the value of the MMF for the two stages of the EPM and the equivalent components, we can continue calculating the magnetic flux and the magnetic flux density (B):

The original formula for force between two magnetized surfaces without fringing is well known, and presented below. In the formula the force is divided by 2. Since we are going to calculate the force for the two areas corresponding to the gaps then the equation to calculate the force as a function of the gap distance looks like:

EPM design

Magnetization coil fabrication

Design parameters for the magnetization coil in an EPM. EPM 6.png
Design parameters for the magnetization coil in an EPM.

The first and most important step is to design the solenoid that will create the magnetic field to reverse the magnetization of the AlNiCo. As mentioned before the AlNiCo has an intrinsic coercivity of 50kA/m so it is necessary to create a field of at least: . It is recommended to design the field 3 times higher than the intrinsic coercivity to fully magnetize a material. Picture below depicts the coil design parameters:

The next step to complete the design is to calculate the B field in the middle point of the coil using the equations for thick solenoids [6] (knowing:):

Then, it is necessary to calculate the length of the wire and the number of turns that we are going to use in the solenoid. The equations provided by Princeton physics [7] was used so N is the number of turns and L is the wire length:

Using the AWG table provided by, [8] for different wires, it is possible to create a spread sheet with the diameter of the different wires and the maximum current they can handle (Maximum amps for power transmission).

To solve this problem it is necessary to fix D1, the solenoid length to L and the current to the maximum value permitted for each wire. This simplify the optimization problem leading to calculate Bz by changing D2. Using solver function in the spreadsheet, this value can be calculated.

After this it is possible to include parameters for the resistance (copper resistance in mΩ/m multiply by the wire length), the power as and the voltage as . A different value for each AWG wire gauge will be generated and the voltage and power to obtain the desired Bz at a maximum current must be calculated. By inspection it is possible to find the wire with minimal power consumption.

The last step to design the coil is plot the B field inside the coil as a function of the position inside the coil. We will use the full version of the equation for thick solenoids [6] and making z variate between -L/2 and L/2:

Magnetic force calculations

Using the formula for force mentioned earlier it is possible to plot the force as a function of the gap distance of the external hiperco bar. Two curves were obtained: one for the EPM in ON state and the other for the EPM in OFF state: If we plot those forces together it is possible to observe the difference of at least 4 orders of magnitude from the EPM when is ON and OFF (This plot is an example of EPM with two cylindrical magnets -one NdFeB and the other AlNiCo- of 1mm diameter and length. The soft magnet material is hiperco with square section bars of side 0.889mm to make the flux area equal to the one in the magnets):

Plot of the forces between the EPM and the external bar as a function of the gap distance between them. For EPM ON and OFF. EPM 7.png
Plot of the forces between the EPM and the external bar as a function of the gap distance between them. For EPM ON and OFF.

Multiphysics simulations

An example of an EPM of by is simulated to verify the difference in the magnetic field when the EPM is ON and OFF. This simulation was made using finite element approach by the software COMSOL Multiphysics®. The picture below shows a simulation of the Magnetic Flux density Field (B) for the EPM ON and OFF (with a calculation of the flux in that specific plane) and below shows multiple cross section measurements of the flux density on top of the EPM (ON and OFF as well). The simulations shown that there are at least 4 orders of magnitude of difference in the external magnetic fields between the two operation modes confirming the magnetic circuit model.

Multiphysics simulation (COMSOL Multiphysics(r)) of the EPM for On and OFF stage. EPM 8.png
Multiphysics simulation (COMSOL Multiphysics®) of the EPM for On and OFF stage.

Applications

Project Ara

Project Ara was an open hardware initiative by Google to create a modular phone where all the components are interchangeable and can be replaced while the device is on. The project was originally announced as using EPMs as the method used to fasten the phone's modules to its endoskeleton. However, the project later announced that they were searching for replacement methods. [9] [10] [11]

The project was suspended on 2 September 2016. Bob O’Donnell of TECHnalysis Research said, “This was a science experiment that failed, and they are moving on.” [12]

Drone package delivery system

Gripping systems for drones have been developed using electropermanent magnets. [13] Nicadrone's OpenGrab EPM v3 was the first of such systems but it is now obsolete. Zubax Robotics, an R&D company, developed the FluxGrip EPM as the next generation payload attachment module. [14]

Related Videos:

Reconfigurable matter

Using a dice of six sides and in each side include an EPM is the concept behind this Pebbles robots that are capable of interpret a simple shape and reproduce it by selecting which blocks must be attached to the other. [15]

Related Videos:

Logitech MX Master 3 mouse scroll wheel

The scroll wheel on this mouse uses a technology called “MagSpeed”: the mouse quickly switches between a typical ratcheting feel and a free-spinning mode. To rapidly switch between modes, the Logitech team engineered a little circuit that energizes a coil which energizes an EPM, which sits still within the internal cavity of the wheel, causing it to pull on the little teeth as they pass, giving the user the illusion of a mechanical detent. This EPM remains energized even when power is shut off. Using a magnet eliminates any mechanical wear over time as it was the case on previous versions of the mouse hardware, and since the magnet is electropermanent the power consumption is zero except when switching modes.

Related Article:

See also

Related Research Articles

<span class="mw-page-title-main">Lorentz force</span> Force acting on charged particles in electric and magnetic fields

In physics, specifically in electromagnetism, the Lorentz force law is the combination of electric and magnetic force on a point charge due to electromagnetic fields. The Lorentz force, on the other hand, is a physical effect that occurs in the vicinity of electrically neutral, current-carrying conductors causing moving electrical charges to experience a magnetic force.

<span class="mw-page-title-main">Magnetic field</span> Distribution of magnetic force

A magnetic field is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets. In addition, a nonuniform magnetic field exerts minuscule forces on "nonmagnetic" materials by three other magnetic effects: paramagnetism, diamagnetism, and antiferromagnetism, although these forces are usually so small they can only be detected by laboratory equipment. Magnetic fields surround magnetized materials, electric currents, and electric fields varying in time. Since both strength and direction of a magnetic field may vary with location, it is described mathematically by a function assigning a vector to each point of space, called a vector field.

<span class="mw-page-title-main">Magnet</span> Object that has a magnetic field

A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, cobalt, etc. and attracts or repels other magnets.

<span class="mw-page-title-main">Electromotive force</span> Electrical action produced by a non-electrical source

In electromagnetism and electronics, electromotive force is an energy transfer to an electric circuit per unit of electric charge, measured in volts. Devices called electrical transducers provide an emf by converting other forms of energy into electrical energy. Other electrical equipment also produce an emf, such as batteries, which convert chemical energy, and generators, which convert mechanical energy. This energy conversion is achieved by physical forces applying physical work on electric charges. However, electromotive force itself is not a physical force, and ISO/IEC standards have deprecated the term in favor of source voltage or source tension instead.

<span class="mw-page-title-main">Electromagnet</span> Magnet created with an electric current

An electromagnet is a type of magnet in which the magnetic field is produced by an electric current. Electromagnets usually consist of wire wound into a coil. A current through the wire creates a magnetic field which is concentrated in the hole in the center of the coil. The magnetic field disappears when the current is turned off. The wire turns are often wound around a magnetic core made from a ferromagnetic or ferrimagnetic material such as iron; the magnetic core concentrates the magnetic flux and makes a more powerful magnet.

<span class="mw-page-title-main">Inductance</span> Property of electrical conductors

Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The electric current produces a magnetic field around the conductor. The magnetic field strength depends on the magnitude of the electric current, and follows any changes in the magnitude of the current. From Faraday's law of induction, any change in magnetic field through a circuit induces an electromotive force (EMF) (voltage) in the conductors, a process known as electromagnetic induction. This induced voltage created by the changing current has the effect of opposing the change in current. This is stated by Lenz's law, and the voltage is called back EMF.

<span class="mw-page-title-main">Solenoid</span> Type of electromagnet formed by a coil of wire

A solenoid is a type of electromagnet formed by a helical coil of wire whose length is substantially greater than its diameter, which generates a controlled magnetic field. The coil can produce a uniform magnetic field in a volume of space when an electric current is passed through it.

<span class="mw-page-title-main">Halbach array</span> Special arrangement of permanent magnets

A Halbach array is a special arrangement of permanent magnets that augments the magnetic field on one side of the array while cancelling the field to near zero on the other side. This is achieved by having a spatially rotating pattern of magnetisation.

<span class="mw-page-title-main">Magnetic moment</span> Magnetic strength and orientation of an object that produces a magnetic field

In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude of torque the object experiences in a given magnetic field. When the same magnetic field is applied, objects with larger magnetic moments experience larger torques. The strength of this torque depends not only on the magnitude of the magnetic moment but also on its orientation relative to the direction of the magnetic field. Its direction points from the south pole to north pole of the magnet.

<span class="mw-page-title-main">Magnetomotive force</span> Concept in physics

In physics, the magnetomotive force is a quantity appearing in the equation for the magnetic flux in a magnetic circuit, Hopkinson's law. It is the property of certain substances or phenomena that give rise to magnetic fields: where Φ is the magnetic flux and is the reluctance of the circuit. It can be seen that the magnetomotive force plays a role in this equation analogous to the voltage V in Ohm's law, V = IR, since it is the cause of magnetic flux in a magnetic circuit:

  1. where N is the number of turns in a coil and I is the electric current through the coil.
  2. where Φ is the magnetic flux and is the magnetic reluctance
  3. where H is the magnetizing force and L is the mean length of a solenoid or the circumference of a toroid.
<span class="mw-page-title-main">Faraday's law of induction</span> Basic law of electromagnetism

Faraday's law of induction is a law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf). This phenomenon, known as electromagnetic induction, is the fundamental operating principle of transformers, inductors, and many types of electric motors, generators and solenoids.

<span class="mw-page-title-main">Magnetic circuit</span> Closed loop path containing a magnetic flux

A magnetic circuit is made up of one or more closed loop paths containing a magnetic flux. The flux is usually generated by permanent magnets or electromagnets and confined to the path by magnetic cores consisting of ferromagnetic materials like iron, although there may be air gaps or other materials in the path. Magnetic circuits are employed to efficiently channel magnetic fields in many devices such as electric motors, generators, transformers, relays, lifting electromagnets, SQUIDs, galvanometers, and magnetic recording heads.

<span class="mw-page-title-main">Permeance</span>

Permeance, in general, is the degree to which a material admits a flow of matter or energy. Permeance is usually represented by a curly capital P: P.

<span class="mw-page-title-main">Faraday paradox</span> Apparent paradox with Faradays law of induction

The Faraday paradox or Faraday's paradox is any experiment in which Michael Faraday's law of electromagnetic induction appears to predict an incorrect result. The paradoxes fall into two classes:

In condensed matter physics, a spin wave is a propagating disturbance in the ordering of a magnetic material. These low-lying collective excitations occur in magnetic lattices with continuous symmetry. From the equivalent quasiparticle point of view, spin waves are known as magnons, which are bosonic modes of the spin lattice that correspond roughly to the phonon excitations of the nuclear lattice. As temperature is increased, the thermal excitation of spin waves reduces a ferromagnet's spontaneous magnetization. The energies of spin waves are typically only μeV in keeping with typical Curie points at room temperature and below.

<span class="mw-page-title-main">Magnetic reluctance</span> Resistance to magnetic flux

Magnetic reluctance, or magnetic resistance, is a concept used in the analysis of magnetic circuits. It is defined as the ratio of magnetomotive force (mmf) to magnetic flux. It represents the opposition to magnetic flux, and depends on the geometry and composition of an object.

In electrical engineering the term flux linkage is used to define the interaction of a multi-turn inductor with the magnetic flux as described by the Faraday's law of induction. Since the contributions of all turns in the coil add up, in the over-simplified situation of the same flux passing through all the turns, the flux linkage is , where is the number of turns. The physical limitations of the coil and the configuration of the magnetic field make some flux to leak between the turns of the coil, forming the leakage flux and reducing the linkage. The flux linkage is measured in webers (Wb), like the flux itself.

<span class="mw-page-title-main">Gyrator–capacitor model</span> Model for magnetic circuits

The gyrator–capacitor model - sometimes also the capacitor-permeance model - is a lumped-element model for magnetic circuits, that can be used in place of the more common resistance–reluctance model. The model makes permeance elements analogous to electrical capacitance rather than electrical resistance. Windings are represented as gyrators, interfacing between the electrical circuit and the magnetic model.

Magnets exert forces and torques on each other through the interaction of their magnetic fields. The forces of attraction and repulsion are a result of these interactions. The magnetic field of each magnet is due to microscopic currents of electrically charged electrons orbiting nuclei and the intrinsic magnetism of fundamental particles that make up the material. Both of these are modeled quite well as tiny loops of current called magnetic dipoles that produce their own magnetic field and are affected by external magnetic fields. The most elementary force between magnets is the magnetic dipole–dipole interaction. If all magnetic dipoles for each magnet are known then the net force on both magnets can be determined by summing all the interactions between the dipoles of the first magnet and the dipoles of the second magnet.

<span class="mw-page-title-main">Magnetic levitation</span> Suspension of objects by magnetic force.

Magnetic levitation (maglev) or magnetic suspension is a method by which an object is suspended with no support other than magnetic fields. Magnetic force is used to counteract the effects of the gravitational force and any other forces.

References

  1. Knaian, Ara Nerses (2010). Electropermanent Magnetic Connectors and Actuators: Devices and Their Application in Programmable Matter (Ph.D.). Massachusetts Institute of Technology. hdl:1721.1/60151.
  2. 1 2 3 Deyle, Travis (2010). "Electropermanent Magnets: Programmable Magnets with Zero Static Power Consumption Enable Smallest Modular Robots Yet". HiZook Robotics News. HiZook. Archived from the original on 2014-04-20. Retrieved 2012-04-06.
  3. Hardesty, Larry (2012). "Self-sculpting sand". MIT News. MIT. Retrieved 2012-04-06.
  4. Knaian, Ara Nerses (2010). Electropermanent Magnetic Connectors and Actuators: Devices and Their Application in Programmable Matter (Ph.D.). Massachusetts Institute of Technology. hdl:1721.1/60151.
  5. Ementor. "https://www.emetor.com/edit/materials/hiperco-50-035mm/?cat=6&co=15, (2015).
  6. 1 2 Axial field of a finite solenoid. "http://www.netdenizen.com/emagnet/solenoids/solenoidonaxis.htm, (2005).
  7. Princeton Physics. "http://physics.princeton.edu/romalis/magnetometer/coildesign/, (2015).
  8. Wire Gauge and Current Limits_EOL. "https://www.eol.ucar.edu/rtf/facilities/isff/LOCAL_access_only/Wire_Size.htm Archived 2014-07-11 at archive.today ", (2015).
  9. Project Ara Developers Conference: " http://www.projectara.com/ara-developers-conference Archived 2015-04-20 at the Wayback Machine , (January_2015).
  10. "Project Ara—New Directions" . Retrieved 2015-08-22.
  11. "Project Ara—Testing". 19 August 2015. Retrieved 2015-08-22.
  12. Love, Julia (2 September 2016). "Google shelves plan for phone with interchangeable parts". Reuters.com. Retrieved 14 January 2017.
  13. Nicadrone Electro Permanent Magnet" Gripping systems (2015).
  14. Zubax FluxGrip EPM" Payload attachment system (2024).
  15. Erico Guizzo "Smart Pebble Robots Will Let You Duplicate Objects on the Fly", IEEE International Conference on Robotics and Automation (ICRA), IEEE spectrum Posted 28 May 2012.