Linear acetylenic carbon

Last updated

Linear acetylenic carbon (LAC), also known as carbyne or Linear Carbon Chain (LCC), is an allotrope of carbon that has the chemical structure (−C≡C−)n as a repeat unit, with alternating single and triple bonds. [1] [2] It would thus be the ultimate member of the polyyne family.

Contents

Electron micrograph of a linear carbon chain (carbyne) between a carbon lump and Fe electrode, approximately 36 nm wide image Carbyne TEM.jpg
Electron micrograph of a linear carbon chain (carbyne) between a carbon lump and Fe electrode, approximately 36 nm wide image

This polymeric carbyne is of considerable interest to nanotechnology as its Young's modulus is 32.7  TPa – forty times that of diamond; [4] this extraordinary number is, however, based on a novel definition of cross-sectional area that does not correspond to the space occupied by the structure. Carbyne has also been identified in interstellar space; however, its existence in condensed phases has been contested recently, as such chains would crosslink exothermically (and perhaps explosively) if they approached each other. [5]

History and controversy

The first claims of detection of this allotrope were made in 1960 [5] [6] and repeated in 1978. [7] A 1982 re-examination of samples from several previous reports determined that the signals originally attributed to carbyne were in fact due to silicate impurities in the samples. [8] Absence of carbyne crystalline rendered the direct observation of a pure carbyne-assembled solid still a major challenge,[ clarification needed ] because carbyne crystals with well-defined structures and sufficient sizes are not available to date. This is indeed the major obstacle to general acceptance of carbyne as a true carbon allotrope. The mysterious carbyne still attracted scientists with its possible extraordinary properties. [9]

During the past thirty five years an increasing body of experimental and theoretical work has been published in the scientific literature dealing with the preparation of carbyne and the study of its structure, properties and potential applications. [10] [11] In 1968 a silver-white new mineral was discovered in graphitic gneisses of the Ries Crater (Nordlingen, Bavaria, Germany). [12] This material was found to consist entirely of carbon and its hexagonal cell dimensions matched those reported earlier for carbyne by Russian scientists. [13] It was concluded that this novel form of natural carbon, chaoite, was generated from graphite by the combined action of high temperature and high pressure, presumably caused by the impact of meteorite. Soon afterwards this “white” carbon was synthesized by sublimation of pyrolytic graphite in vacuum. [14]

In 1984, a group at Exxon reported the detection of clusters with even numbers of carbons, between 30 and 180, in carbon evaporation experiments, and attributed them to polyyne carbon. [15] However, these clusters later were identified as fullerenes. [5]

In 1991, carbyne was allegedly detected among various other allotropes of carbon in samples of amorphous carbon black vaporized and quenched by shock waves produced by shaped explosive charges. [16]

In 1995, the preparation of carbyne chains with over 300 carbons was reported. They were claimed to be reasonably stable, even against moisture and oxygen, as long as the terminal alkynes on the chain are capped with inert groups (such as tert-butyl or trifluoromethyl) rather than hydrogen atoms. The study claimed that the data specifically indicated a carbyne-like structures rather than fullerene-like ones. [17] However, according to H. Kroto, the properties and synthetic methods used in those studies are consistent with generation of fullerenes. [5]

Another 1995 report claimed detection of carbyne chains of indeterminate length in a layer of carbonized material, about 180  nm thick, resulting from the reaction of solid polytetrafluoroethylene (PTFE, Teflon) immersed in alkali metal amalgam at ambient temperature (with no hydrogen-bearing species present). [18] The assumed reaction was

(-CF2−CF2-)n + 4M → (-C≡C-)n + 4MF,

where M is either lithium, sodium, or potassium. The authors conjectured that nanocrystals of the metal fluoride between the chains prevented their polymerization.

In 1999, it was reported that copper(I) acetylide (Cu+2 C2−2), after partial oxidation by exposure to air or copper(II) ions followed by decomposition with hydrochloric acid, leaves a "carbonaceous" residue with the spectral signature of (−C≡C−)n chains with n=2–6. The proposed mechanism involves oxidative polymerization of the acetylide anions C2−2 into carbyne-type anions C(≡C−C≡)nC2− or cumulene-type anions C(=C=C=)mC4−. [19] Also, thermal decomposition of copper acetylide in vacuum yielded a fluffy deposit of fine carbon powder on the walls of the flask, which, on the basis of spectral data, was claimed to be carbyne rather than graphite. [19] Finally, the oxidation of copper acetylide in ammoniacal solution (Glaser's reaction) produces a carbonaceous residue that was claimed to consist of "polyacetylide" anions capped with residual copper(I) ions,

Cu+ C(≡C−C≡)nC Cu+.

On the basis of the residual amount of copper, the mean number of units n was estimated to be around 230. [20]

In 2004, an analysis of a synthesized linear carbon allotrope found it to have a cumulene electronic structure—sequential double bonds along an sp -hybridized carbon chain—rather than the alternating triple–single pattern of linear carbyne. [21]

In 2016, the synthesis of linear chains of up to 6,000 sp-hybridized carbon atoms was reported. The chains were grown inside double-walled carbon nanotubes, and are highly stable protected by their hosts. [22] [23]

Polyynes

While the existence of "carbyne" chains in pure neutral carbon material is still disputed, short (−C≡C−)n chains are well established as substructures of larger molecules (polyynes). [24] As of 2010, the longest such chain in a stable molecule had 22 acetylenic units (44 atoms), stabilized by rather bulky end groups. [25]

Structure

The carbon atoms in this form are each linear in geometry with sp orbital hybridisation. The estimated length of the bonds is 120.7  pm (triple) and 137.9 pm (single). [18]

Other possible configurations for a chain of carbon atoms include polycumulene (polyethylene-diylidene) chains with double bonds only (128.2 pm). This chain is expected to have slightly higher energy, with a Peierls gap of 2–5  eV . For short Cn molecules, however, the polycumulene structure seems favored. When n is even, two ground configurations, very close in energy, may coexist: one linear, and one cyclic (rhombic). [18]

The limits of flexibility of the carbyne chain are illustrated by a synthetic polyyne with a backbone of 8 acetylenic units, whose chain was found to be bent by 25° or more (about at each carbon) in the solid state, to accommodate the bulky end groups of adjacent molecules. [26]

The highly symmetric carbyne chain is expected to have only one Raman-active mode with Σg symmetry, due to stretching of bonds in each single-double pair[ clarification needed ], with frequency typically between 1800 and 2300  cm−1 , [18] and affected by their environments. [27]

Properties

Carbyne chains have been claimed to be the strongest material known per density. Calculations indicate that carbyne's specific tensile strength (strength divided by density) of (6.0–7.5)×107 (N⋅m)/kg beats graphene ((4.7–5.5)×107 (N⋅m)/kg), carbon nanotubes ((4.3–5.0)×107 (N⋅m)/kg), and diamond ((2.5–6.5)×107 (N⋅m)/kg). [28] [29] [30] Its specific modulus (Young's Modulus divided by density) of around 109 (N⋅m)/kg is also double that of graphene, which is around 4.5×108 (N⋅m)/kg. [28] [30]

Stretching carbyne 10% alters its electronic band gap from 3.2–4.4 eV. [31] Outfitted with molecular handles at chain's ends, it can also be twisted to alter its band gap. With a 90° end-to-end twist, carbyne turns into a magnetic semiconductor. [29]

In 2017, the band gaps of confined linear carbon chains (LCC) inside double-walled carbon nanotubes with lengths ranging from 36 up to 6000 carbon atoms were determined for the first time ranging from 2.253–1.848 eV, following a linear relation with Raman frequency. This lower bound is the smallest band gap of linear carbon chains observed so far. In 2020, the strength (Young's modulus) of linear carbon chains (LCC) was experimentally calculated to be about 20 TPa which is much higher than that of other carbon materials like graphene and carbon nanotubes. [32] The comparison with experimental data obtained for short chains in gas phase or in solution demonstrates the effect of the DWCNT encapsulation, leading to an essential downshift of the band gap. [33]

The LCCs inside double-walled carbon nanotubes lead to an increase of the photoluminescence (PL) signal of the inner tubes up to a factor of 6 for tubes with (8,3) chirality. This behavior can be attributed to a local charge transfer from the inner tubes to the carbon chains, counterbalancing quenching mechanisms induced by the outer tubes. [34]

Carbyne chains can take on side molecules that may make the chains suitable for energy [29] and hydrogen [35] storage.

With a differential Raman scattering cross section of 10−22 cm2 sr−1 per atom, carbyne chains confined inside carbon nanotubes are the strongest Raman scatterer ever reported, [36] exceeding any other know material by two orders of magnitude.

Related Research Articles

<span class="mw-page-title-main">Alkyne</span> Hydrocarbon compound containing one or more C≡C bonds

In organic chemistry, an alkyne is an unsaturated hydrocarbon containing at least one carbon—carbon triple bond. The simplest acyclic alkynes with only one triple bond and no other functional groups form a homologous series with the general chemical formula CnH2n−2. Alkynes are traditionally known as acetylenes, although the name acetylene also refers specifically to C2H2, known formally as ethyne using IUPAC nomenclature. Like other hydrocarbons, alkynes are generally hydrophobic.

<span class="mw-page-title-main">Boron nitride</span> Refractory compound of boron and nitrogen with formula BN

Boron nitride is a thermally and chemically resistant refractory compound of boron and nitrogen with the chemical formula BN. It exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexagonal form corresponding to graphite is the most stable and soft among BN polymorphs, and is therefore used as a lubricant and an additive to cosmetic products. The cubic variety analogous to diamond is called c-BN; it is softer than diamond, but its thermal and chemical stability is superior. The rare wurtzite BN modification is similar to lonsdaleite but slightly softer than the cubic form.

<span class="mw-page-title-main">Carbon</span> Chemical element, symbol C and atomic number 6

Carbon is a chemical element; it has symbol C and atomic number 6. It is nonmetallic and tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 electrons. It belongs to group 14 of the periodic table. Carbon makes up about 0.025 percent of Earth's crust. Three isotopes occur naturally, 12C and 13C being stable, while 14C is a radionuclide, decaying with a half-life of 5,700 years. Carbon is one of the few elements known since antiquity.

<span class="mw-page-title-main">Carbon nanotube</span> Allotropes of carbon with a cylindrical nanostructure

A carbon nanotube (CNT) is a tube made of carbon with a diameter in the nanometre range (nanoscale). They are one of the allotropes of carbon.

<span class="mw-page-title-main">Fullerene</span> Allotrope of carbon

A fullerene is an allotrope of carbon whose molecules consist of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to seven atoms. The molecules may have hollow sphere- and ellipsoid-like forms, tubes, or other shapes.

<span class="mw-page-title-main">Allotropes of carbon</span> Materials made only out of carbon

Carbon is capable of forming many allotropes due to its valency. Well-known forms of carbon include diamond and graphite. In recent decades, many more allotropes have been discovered and researched, including ball shapes such as buckminsterfullerene and sheets such as graphene. Larger-scale structures of carbon include nanotubes, nanobuds and nanoribbons. Other unusual forms of carbon exist at very high temperatures or extreme pressures. Around 500 hypothetical 3‑periodic allotropes of carbon are known at the present time, according to the Samara Carbon Allotrope Database (SACADA).

<span class="mw-page-title-main">Graphene</span> Hexagonal lattice made of carbon atoms

Graphene is an allotrope of carbon consisting of a single layer of atoms arranged in a hexagonal lattice nanostructure. The name is derived from "graphite" and the suffix -ene, reflecting the fact that the graphite allotrope of carbon contains numerous double bonds.

<span class="mw-page-title-main">Aggregated diamond nanorod</span> Nanocrystalline form of diamond

Aggregated diamond nanorods, or ADNRs, are a nanocrystalline form of diamond, also known as nanodiamond or hyperdiamond.

<span class="mw-page-title-main">Polyyne</span> Any organic compound with alternating C–C and C≡C bonds

A polyyne is any organic compound with alternating single and triple bonds; that is, a series of consecutive alkynes, (−C≡C−)n with n greater than 1. These compounds are also called polyacetylenes, especially in the natural products and chemical ecology literature, even though this nomenclature more properly refers to acetylene polymers composed of alternating single and double bonds (−CR=CR′−)n with n greater than 1. They are also sometimes referred to as oligoynes, or carbinoids after "carbyne" (−C≡C−), the hypothetical allotrope of carbon that would be the ultimate member of the series. The synthesis of this substance has been claimed several times since the 1960s, but those reports have been disputed. Indeed, the substances identified as short chains of "carbyne" in many early organic synthesis attempts would be called polyynes today.

Chaoite, or white carbon, is a mineral described as an allotrope of carbon whose existence is disputed. It was discovered in shock-fused graphite gneiss from the Ries crater in Bavaria. It has been described as slightly harder than graphite, with a reflection colour of grey to white. From its electron diffraction pattern, the mineral has been considered to have a carbyne structure, the linear acetylenic carbon allotrope of carbon. A later report has called this identification, and the very existence of carbyne phases, into question, arguing that the new reflections in the diffraction pattern are due to clay impurities.

Copper(I) acetylide, Kupfercarbid or cuprous acetylide, is a chemical compound with the formula Cu2C2. Although never characterized by X-ray crystallography, the material has been claimed at least since 1856. One form is claimed to be a monohydrate with formula Cu
2
C
2
.H
2
O
is a reddish-brown explosive powder.

<span class="mw-page-title-main">Graphene nanoribbon</span> Carbon allotrope

Graphene nanoribbons are strips of graphene with width less than 100 nm. Graphene ribbons were introduced as a theoretical model by Mitsutaka Fujita and coauthors to examine the edge and nanoscale size effect in graphene.

<span class="mw-page-title-main">Optical properties of carbon nanotubes</span> Optical properties of the material

The optical properties of carbon nanotubes are highly relevant for materials science. The way those materials interact with electromagnetic radiation is unique in many respects, as evidenced by their peculiar absorption, photoluminescence (fluorescence), and Raman spectra.

In organic chemistry, a cyclo[n]carbon is a chemical compound consisting solely of a number n of carbon atoms covalently linked in a ring. Since the compounds are composed only of carbon atoms, they are allotropes of carbon. Possible bonding patterns include all double bonds or alternating single bonds and triple bonds.

Carbide-derived carbon (CDC), also known as tunable nanoporous carbon, is the common term for carbon materials derived from carbide precursors, such as binary (e.g. SiC, TiC), or ternary carbides, also known as MAX phases (e.g., Ti2AlC, Ti3SiC2). CDCs have also been derived from polymer-derived ceramics such as Si-O-C or Ti-C, and carbonitrides, such as Si-N-C. CDCs can occur in various structures, ranging from amorphous to crystalline carbon, from sp2- to sp3-bonded, and from highly porous to fully dense. Among others, the following carbon structures have been derived from carbide precursors: micro- and mesoporous carbon, amorphous carbon, carbon nanotubes, onion-like carbon, nanocrystalline diamond, graphene, and graphite. Among carbon materials, microporous CDCs exhibit some of the highest reported specific surface areas (up to more than 3000 m2/g). By varying the type of the precursor and the CDC synthesis conditions, microporous and mesoporous structures with controllable average pore size and pore size distributions can be produced. Depending on the precursor and the synthesis conditions, the average pore size control can be applied at sub-Angstrom accuracy. This ability to precisely tune the size and shapes of pores makes CDCs attractive for selective sorption and storage of liquids and gases (e.g., hydrogen, methane, CO2) and the high electric conductivity and electrochemical stability allows these structures to be effectively implemented in electrical energy storage and capacitive water desalinization.

<span class="mw-page-title-main">Graphyne</span> Allotrope of carbon

Graphyne is an allotrope of carbon. Its structure is one-atom-thick planar sheets of sp and sp2-bonded carbon atoms arranged in crystal lattice. It can be seen as a lattice of benzene rings connected by acetylene bonds. The material is called graphyne-n when benzene rings are connected by n sequential acetylene molecules, and graphdiyne for a particular case of n = 2.

Carbyne (R-C) is a class of chemical compounds with three dangling bonds on a carbon atom.

Filamentous carbon is a carbon-containing deposit structure that refers to several allotropes of carbon, including carbon nanotubes, carbon nanofibers, and microcoils. It forms from gaseous carbon compounds. Filamentous carbon structures all contain metal particles. These are either iron, cobalt, or nickel or their alloys. Deposits of it also significantly disrupt synthesis gas methanation. Acetylene is involved in a number of method of the production of filamentous carbon. The structures of filamentous carbon are mesoporous and on the micrometer scale in dimension. Most reactions that form the structures take place at or above 280 °C (536 °F).

Silicynes are allotropes of silicon.

References

  1. Kudryavtsev, Yu P. (1999). "The Discovery of Carbyne". In Heimann, Robert B.; Evsyukov, Sergey E.; Kavan, Ladislav (eds.). Carbyne and Carbynoid Structures. Physics and Chemistry of Materials with Low-Dimensional Structures. Vol. 21. Dordrecht, The Netherlands: Springer. pp. 1–6. doi:10.1007/978-94-011-4742-2_1. ISBN   0-7923-5323-4.
  2. Baughman, R. H. (2006). "CHEMISTRY: Dangerously Seeking Linear Carbon". Science. 312 (5776): 1009–1110. doi:10.1126/science.1125999. PMID   16709775. S2CID   93868586.
  3. La Torre, A.; Botello-Mendez, A.; Baaziz, W.; Charlier, J. -C.; Banhart, F. (2015). "Strain-induced metal–semiconductor transition observed in atomic carbon chains". Nature Communications. 6: 6636. Bibcode:2015NatCo...6.6636L. doi:10.1038/ncomms7636. PMC   4389248 . PMID   25818506.
  4. Itzhaki, L.; Altus, E.; Basch, H.; Hoz, S. (2005). "Harder than Diamond: Determining the Cross-Sectional Area and Young's Modulus of Molecular Rods". Angewandte Chemie. 117 (45): 7598. Bibcode:2005AngCh.117.7598I. doi:10.1002/ange.200502448.Itzhaki, L.; Altus, E.; Basch, H.; Hoz, S. (2005). "Harder than Diamond: Determining the Cross-Sectional Area and Young's Modulus of Molecular Rods". Angewandte Chemie International Edition. 44 (45): 7432–7435. doi:10.1002/anie.200502448. PMID   16240306.
  5. 1 2 3 4 Kasatockin V.I., Koudryavtsev Y.P, Sladkov A.M, Korshak V.V Inventor's certification, N°107 (07/12/1971), priority date 06/11/1960
  6. Sladkov A.M, Kudryavtsev Y.P Diamond, graphite, carbyne 3/4 the allotropic forms of carbon, [J], Priroda (Nature), 1969, 58:37-44
  7. Whittaker, A. G. (1978). "Carbon: A New View of Its High-Temperature Behavior". Science. 200 (4343): 763–4. Bibcode:1978Sci...200..763G. doi:10.1126/science.200.4343.763. PMID   17743239. S2CID   45075306. As cited by Kroto(2010).
  8. Smith, P. P. K.; Buseck, P. R. (1982). "Carbyne Forms of Carbon: Do They Exist?". Science. 216 (4549): 984–6. Bibcode:1982Sci...216..984S. doi:10.1126/science.216.4549.984. PMID   17809068. S2CID   13290442. As cited by Kroto(2010).
  9. Chuan, Xu-yun; Want, Tong-kuan; Donnet, Jean-Baptiste (March 2005). "Stability and Existence of Carbyne with Carbon Chains" (PDF). New Carbon Materials. 20 (1): 83–92. Archived from the original (PDF) on 26 January 2016. Retrieved 22 January 2016.
  10. Kudryavtsev, Yu.P; Heimann R.B, P.B; Evsyukov, S.E (1996). "Carbynes:advances in the field of linear carbon-chain compounds". Journal of Materials Science. 31 (21): 5557–5571. Bibcode:1996JMatS..31.5557K. doi:10.1007/BF01160799. S2CID   95313003.
  11. Kudryavtsev, Yu.P; Evsyukov, S.E; Babaev, V.G (1992). "Oriented carbyne layers". Carbon. 30 (2): 213–221. doi:10.1016/0008-6223(92)90082-8.
  12. Goresy, A.E.; Donnat, G (1968). "Graphitic gneisses". Science. 161: 363.
  13. Kudryavtsev, Yu.P; Evsyukov, S.E; Guseva, M.B (1997). "Carbyne - a linear chainlike carbon allotrope". Chemistry and Physics of Carbon. 1: 2–70. doi:10.1201/9781482273199-8. ISBN   9780429182686.
  14. Whittaker, A.G (1979). "Carbon:occurrence of carbyne forms of carbon in natural graphite". Carbon. 17: 21–24. doi:10.1016/0008-6223(79)90066-6.
  15. E. A. Rohlfing; D. M. Cox; A. J. Kaldor (1984). "Production and characterization of supersonic carbon cluster beams". Journal of Chemical Physics. 81 (7): 3332. Bibcode:1984JChPh..81.3322R. doi:10.1063/1.447994. As cited by Kroto(2010).
  16. Yamada, K.; Kunishige, H.; Sawaoka, A. B. (1991). "Formation process of carbyne produced by shock compression". Naturwissenschaften. 78 (10): 450. Bibcode:1991NW.....78..450Y. doi:10.1007/BF01134379. S2CID   2504527.
  17. Lagow, R. J.; Kampa, J. J.; Wei, H. -C.; Battle, S. L.; Genge, J. W.; Laude, D. A.; Harper, C. J.; Bau, R.; Stevens, R. C.; Haw, J. F.; Munson, E. (1995). "Synthesis of Linear Acetylenic Carbon: The "sp" Carbon Allotrope". Science. 267 (5196): 362–367. Bibcode:1995Sci...267..362L. doi:10.1126/science.267.5196.362. PMID   17837484. S2CID   12939062.
  18. 1 2 3 4 Kastner, J.; Kuzmany, H.; Kavan, L.; Dousek, F. P.; Kuerti, J. (1995). "Reductive Preparation of Carbyne with High Yield. An in Situ Raman Scattering Study". Macromolecules. 28 (1): 344–353. Bibcode:1995MaMol..28..344K. doi:10.1021/ma00105a048.
  19. 1 2 Cataldo, Franco (1999). "From dicopper acetylide to carbyne". Polymer International. 48: 15–22. doi:10.1002/(SICI)1097-0126(199901)48:1<15::AID-PI85>3.0.CO;2-#.
  20. Cataldo, Franco (1997). "A study on the structure and electrical properties of the fourth carbon allotrope: Carbyne". Polymer International. 44 (2): 191–200. doi:10.1002/(SICI)1097-0126(199710)44:2<191::AID-PI842>3.0.CO;2-Y.
  21. Xue, K. H.; Tao, F. F.; Shen, W.; He, C. J.; Chen, Q. L.; Wu, L. J.; Zhu, Y. M. (2004). "Linear carbon allotrope – carbon atom wires prepared by pyrolysis of starch". Chemical Physics Letters. 385 (5–6): 477. Bibcode:2004CPL...385..477X. doi:10.1016/j.cplett.2004.01.007.
  22. "Route to Carbyne: Scientists Create Ultra-Long 1D Carbon Chains". Sci-news.com. 2016-04-09. Retrieved 2016-04-10.
  23. Shi, Lei; Rohringer, Philip; Suenaga, Kazu; Niimi, Yoshiko; Kotakoski, Jani; Meyer, Jannik C.; Peterlik, Herwig; Wanko, Marius; Cahangirov, Seymur; Rubio, Angel; Lapin, Zachary J.; Novotny, Lukas; Ayala, Paola; Pichler, Thomas (2016). "Confined linear carbon chains as a route to bulk carbyne". Nature Materials. 15 (6): 634–639. arXiv: 1507.04896 . Bibcode:2016NatMa..15..634S. doi:10.1038/nmat4617. PMID   27043782. S2CID   205413206.
  24. Chalifoux, W. A.; Tykwinski, R. R. (2009). "Synthesis of extended polyynes: Toward carbyne". Comptes Rendus Chimie. 12 (3–4): 341. doi:10.1016/j.crci.2008.10.004.
  25. Hadlington, Simon (19 September 2010). "One dimensional carbon chains get longer". Chemistry World . Royal Society of Chemistry.
  26. Eisler, S.; Slepkov, A. D.; Elliott, E.; Luu, T.; McDonald, R.; Hegmann, F. A.; Tykwinski, R. R. (2005). "Polyynes as a Model for Carbyne: Synthesis, Physical Properties, and Nonlinear Optical Response". Journal of the American Chemical Society. 127 (8): 2666–2676. doi:10.1021/ja044526l. PMID   15725024.
  27. Wanko, M; Cahangirov, Seymur; Shi, Lei; Rohringer, Philip; Lapin, Zachary J; Novotny, Lukas; Ayala, Paola; Pichler, Thomas; Rubio, Angel (2016). "Polyyne Electronic and Vibrational Properties under Environmental Interactions". Phys. Rev. B. 94 (19): 195422. arXiv: 1604.00483 . Bibcode:2016PhRvB..94s5422W. doi: 10.1103/PhysRevB.94.195422 .
  28. 1 2 Emerging Technology From the arXiv August 15, 2013 (2013-08-15). "New Form of Carbon is Stronger Than Graphene and Diamond". MIT Technology Review. Retrieved 2013-12-24.{{cite web}}: CS1 maint: numeric names: authors list (link)
  29. 1 2 3 "New one-dimensional form of carbon may be the strongest material ever". KurzweilAI. 11 October 2013.
  30. 1 2 Liu, Mingjie; Artyukhov, Vasilii I.; Lee, Hoonkyung; Xu, Fangbo; Yakobson, Boris I. (2013). "Carbyne from first principles: Chain of C atoms, a nanorod or a nanorope". ACS Nano. 7 (11): 10075–82. arXiv: 1308.2258 . doi:10.1021/nn404177r. PMID   24093753. S2CID   23650957.
  31. Borghino, Dario (15 October 2013). "Carbyne: The new world's strongest material?". New Atlas.
  32. Sharma, Keshav; Costa, Nathalia (2020-08-31). "Anharmonicity and Universal Response of Linear Carbon Chain Mechanical Properties under Hydrostatic Pressure". Phys. Rev. Lett. 125 (10): 105051. Bibcode:2020PhRvL.125j5501S. doi:10.1103/PhysRevLett.125.105501. hdl: 1721.1/132299 . PMID   32955330. S2CID   221828448.
  33. Shi, Lei; Rohringer, Philip; Wanko, Marius; Rubio, Angel; Waßerroth, Sören; Reich, Stephanie; Cambré, Sofie; Wenseleers, Wim; Ayala, Paola; Pichler, Thomas (2016). "Electronic band gaps of confined linear carbon chains ranging from polyyne to carbyne". Physical Review Materials. 1 (7): 075601. doi:10.1103/PhysRevMaterials.1.075601. hdl: 21.11116/0000-0001-6B23-0 . S2CID   119087831.
  34. Rohringer, Philip; Shi, Lei; Ayala, Paola; Pichler, Thomas (2016). "Selective Enhancement of Inner Tube Photoluminescence in Filled Double-Walled Carbon Nanotubes". Advanced Functional Materials. 26 (27): 4874–4881. doi: 10.1002/adfm.201505502 .
  35. Sorokin, Pavel B.; Lee, Hoonkyung; Antipina, Lyubov Yu.; Singh, Abhishek K.; Yakobson, Boris I. (2011). "Calcium-decorated carbyne networks as hydrogen storage media". Nano Letters. 11 (7): 2660–2665. Bibcode:2011NanoL..11.2660S. doi:10.1021/nl200721v. PMID   21648444.
  36. Tschannen, Cla Duri; Gordeev, Georgy; Reich, Stephanie; Shi, Lei; Pichler, Thomas; Frimmer, Martin; Novotny, Lukas; Heeg, Sebastian (2020). "Raman Scattering Cross Section of Confined Carbyne". Nano Letters. 20 (9): 6750–6755. Bibcode:2020NanoL..20.6750T. doi: 10.1021/acs.nanolett.0c02632 . hdl: 20.500.11850/440809 . PMID   32786933. S2CID   220055830.

Further reading