Amorphous metal

Last updated

Samples of amorphous metal, with millimeter scale Bulk Metallic Glass Sample.jpg
Samples of amorphous metal, with millimeter scale

An amorphous metal (also known as metallic glass, glassy metal, or shiny metal) is a solid metallic material, usually an alloy, with disordered atomic-scale structure. Most metals are crystalline in their solid state, which means they have a highly ordered arrangement of atoms. Amorphous metals are non-crystalline, and have a glass-like structure. But unlike common glasses, such as window glass, which are typically electrical insulators, amorphous metals have good electrical conductivity and can show metallic luster.

Contents

Amorphous metals can be produced in several ways, including extremely rapid cooling, physical vapor deposition, solid-state reaction, ion irradiation, and mechanical alloying. [1] [2] Small batches of amorphous metals have been produced through a variety of quick-cooling methods, such as amorphous metal ribbons produced by sputtering molten metal onto a spinning metal disk (melt spinning). The rapid cooling (millions of degrees Celsius per second) comes too fast for crystals to form and the material is "locked" in a glassy state. [3] Alloys with cooling rates low enough to allow formation of amorphous structure in thick layers (over 1 millimetre or 0.039 inches) have been produced; bulk metallic glasses. Batches of amorphous steel with three times the strength of conventional steel alloys have been produced. New techniques such as 3D printing, also characterised by high cooling rates, are an active research topic. [4]

History

The first reported metallic glass was Au75Si25, produced at Caltech by Klement, Willens, and Duwez in 1960. [5] This and other early glass-forming alloys had to be rapidly cooled (on the order of one mega kelvin per second, 106 K/s) to avoid crystallization. An important consequence of this was that metallic glasses could be produced in a few forms (typically ribbons, foils, or wires) in which one dimension was small so that heat could be extracted quickly enough to achieve the required cooling rate. As a result, metallic glass specimens (with a few exceptions) were limited to thicknesses of less than one hundred microns.

In 1969, an alloy of 77.5% palladium, 6% copper, and 16.5% silicon was found to have critical cooling rate between 100 and 1000 K/s.

In 1976, Liebermann and Graham developed a method of manufacturing thin ribbons of amorphous metal on a supercooled fast-spinning wheel. [6] This was an alloy of iron, nickel, and boron. The material, known as Metglas, was commercialized in the early 1980s and became used for low-loss power distribution transformers (amorphous metal transformer). Metglas-2605 is composed of 80% iron and 20% boron, has a Curie temperature of 646 K (373 °C; 703 °F) and a room temperature saturation magnetization of 1.56 teslas. [7]

In the early 1980s, glassy ingots with a diameter of 5 mm (0.20 in) were produced with an alloy of 55% palladium, 22.5% lead, and 22.5% antimony, by surface etching followed with heating-cooling cycles. Using boron oxide flux, the achievable thickness increased to one centimeter.[ clarification needed ]

In 1982, a study on amorphous metal structural relaxation indicated a relationship between the specific heat and temperature of (Fe0.5Ni0.5)83P17. As the material was heated, the two properties displayed a negative relationship starting at 375 K, due to the change in relaxed amorphous states. When the material was annealed for periods from 1 to 48 hours, the properties instead displayed a positive relationship starting at 475 K for all annealing periods, since the annealing induced structure disappears at that temperature. [8] In this study, amorphous alloys demonstrated glass transition and a super cooled liquid region. Between 1988 and 1992, more studies found more glass-type alloys with glass transition and a super cooled liquid region. From those studies, bulk glass alloys were made of La, Mg, and Zr, and these alloys demonstrated plasticity even with ribbon thickness from 20 μm to 50 μm. The plasticity was a stark difference to past amorphous metals that became brittle at those thicknesses. [8] [9] [10] [11]

In 1988, alloys of lanthanum, aluminium, and copper ore were revealed to be glass-forming. Al-based metallic glasses containing scandium exhibited a record-type tensile mechanical strength of about 1,500 MPa (220 ksi). [12]

Bulk amorphous alloys of several millimeters in thickness were rare, although Pd-based amorphous alloys had been formed into rods with a 2 mm (0.079 in) diameter by quenching, [13] and spheres with a 10 mm (0.39 in) diameter were formed by repetition flux melting with B2O3 and quenching. [14]

New techniques were found in 1990, producing alloys that form glasses at cooling rates as low as one kelvin per second. These cooling rates can be achieved by simple casting into metallic molds. These alloys can be cast into parts several centimeters thick while retaining an amorphous structure. The best glass-forming alloys were based on zirconium and palladium, but alloys based on iron, titanium, copper, magnesium, and other metals are known. The process exploited a phenomenon called "confusion". Such alloys contain many elements (often four or more) such that upon cooling sufficiently quickly, constituent atoms cannot achieve an equilibrium crystalline state before their mobility is lost. In this way, the random disordered state of the atoms is "locked in".

In 1992, the commercial amorphous alloy, Vitreloy 1 (41.2% Zr, 13.8% Ti, 12.5% Cu, 10% Ni, and 22.5% Be), was developed at Caltech, as a part of Department of Energy and NASA research of new aerospace materials. [15]

By 2000, research in Tohoku University [16] and Caltech yielded multicomponent alloys based on lanthanum, magnesium, zirconium, palladium, iron, copper, and titanium, with critical cooling rate between 1 K/s and 100 K/s, comparable to oxide glasses.[ clarification needed ]

In 2004, bulk amorphous steel was successfully produced by a groups at Oak Ridge National Laboratory, which refers to their product as "glassy steel", and another at University of Virginia, named "DARVA-Glass 101". [17] [18] The product is non-magnetic at room temperature and significantly stronger than conventional steel. [19] [20]

In 2018, a team at SLAC National Accelerator Laboratory, the National Institute of Standards and Technology (NIST) and Northwestern University reported the use of artificial intelligence to predict and evaluate samples of 20,000 different likely metallic glass alloys in a year. [21] [22]

Properties

Amorphous metal is usually an alloy rather than a pure metal. The alloys contain atoms of significantly different sizes, leading to low free volume (and therefore up to orders of magnitude higher viscosity than other metals and alloys) in molten state. The viscosity prevents the atoms from moving enough to form an ordered lattice. The material displays low shrinkage during cooling, and resistance to plastic deformation. The absence of grain boundaries, the weak spots of crystalline materials, leads to better wear resistance [23] and lesscorrosion. Amorphous metals, while technically glasses, are much tougher and less brittle than oxide glasses and ceramics. Amorphous metals are either non-ferromagnetic, if they are composed of Ln, Mg, Zr, Ti, Pd, Ca, Cu, Pt and Au, or ferromagnetic, if they are composed of Fe, Co, and Ni. [24]

Thermal conductivity is lower than in crystalline metals. As formation of amorphous structure relies on fast cooling, this limits the thickness of amorphous structures. To form amorphous structure despite slower cooling, the alloy has to be made of three or more components, leading to complex crystal units with higher potential energy and lower odds of formation. [25] The atomic radius of the components has to be significantly different (over 12%), to achieve high packing density and low free volume. The combination of components should have negative mixing heat, inhibiting crystal nucleation and prolonging the time the molten metal stays in supercooled state.

As temperatures change, the electrical resistivity of amorphous metals behaves very different than that of regular metals. While resistivity in crystalline metals generally increases with temperature, following Matthiessen's rule, resistivity in many amorphous metals decreases with increasing temperature. This effect can be observed in amorphous metals of high resistivities between 150 and 300 microohm-centimeters. [26] In these metals, the scattering events causing the resistivity of the metal are not statistically independent, thus explaining the breakdown of Matthiessen's rule. The fact that the thermal change of the resistivity in amorphous metals can be negative over a large range of temperatures and correlated to their absolute resistivity values was identified by Mooij in 1973, becoming Mooijs-rule. [27] [28]

Alloys of boron, silicon, phosphorus, and other glass formers with magnetic metals (iron, cobalt, nickel) have high magnetic susceptibility, with low coercivity and high electrical resistance. Usually the electrical conductivity of a metallic glass is of the same low order of magnitude as of a molten metal just above the melting point. The high resistance leads to low losses by eddy currents when subjected to alternating magnetic fields, a property useful for e.g. transformer magnetic cores. Their low coercivity also contributes to low loss.

Buckel and Hilsch discovered the superconductivity of amorphous metal thin films experimentally in the early 1950s. [29] For certain metallic elements the superconducting critical temperature Tc can be higher in the amorphous state (e.g. upon alloying) than in the crystalline state, and in several cases Tc increases upon increasing the structural disorder. This behavior can be explained by the effect of structural disorder on electron-phonon coupling. [30]

Amorphous metals have higher tensile yield strengths and higher elastic strain limits than polycrystalline metal alloys, but their ductilities and fatigue strengths are lower. [31]

Amorphous alloys have a variety of potentially useful properties. In particular, they tend to be stronger than crystalline alloys of similar chemical composition, and they can sustain larger reversible ("elastic") deformations than crystalline alloys. Amorphous metals derive their strength directly from their non-crystalline structure, which does not have defects (such as dislocations) that limit their strength. Vitreloy is an amorphous metal with a tensile strength almost double that of high-grade titanium. However, metallic glasses at room temperature are not ductile and tend to fail suddenly and surprisingly when loaded in tension, which limits applicability in reliability-critical applications. Metal matrix composites consisting of a ductile crystalline metal matrix containing dendritic particles or fibers of an amorphous glass metal are an alternative.

Perhaps the most useful property of bulk amorphous alloys is that they are true glasses, which means that they soften and flow upon heating. This allows for easy processing, such as by injection molding, in much the same way as polymers. As a result, amorphous alloys have been commercialized for use in sports equipment, [32] medical devices, and as cases for electronic equipment. [33]

Thin films of amorphous metals can be deposited as protective coatings via high velocity oxygen fuel.

Applications

Commercial

The most important application exploits the magnetic properties of some ferromagnetic metallic glasses. The low magnetization loss is used in high efficiency transformers at line frequency and in some higher frequency transformers. Amorphous steel is very brittle that makes it difficult to punch into motor laminations. [34] Electronic article surveillance (such as passive ID tags) often uses metallic glasses because of these magnetic properties.

Ti-based metallic glass, when made into thin pipes, have a high tensile strength of 2,100 MPa (300 ksi), elastic elongation of 2% and high corrosion resistance. [35] A Ti–Zr–Cu–Ni–Sn metallic glass was used to improve the sensitivity of a Coriolis flow meter. This flow meter is about 28-53 times more sensitive than conventional meters, [36] which can be applied in fossil-fuel, chemical, environmental, semiconductor and medical science industries.

Zr-Al-Ni-Cu based metallic glass can be shaped into 2.2 to 5 by 4 mm (0.087 to 0.197 by 0.157 in) pressure sensors for automobile and other industries. Such sensors are smaller, more sensitive, and possess greater pressure endurance than conventional stainless steel. Additionally, this alloy was used to make the world's smallest geared motor with diameter 1.5 and 9.9 mm (0.059 and 0.390 in) at the time. [37]

Potential

Amorphous metals exhibit unique softening behavior above their glass transition and this softening has been increasingly explored for thermoplastic forming of metallic glasses. [38] Such low softening temperature supports simple methods for making nanoparticle composites (e.g. carbon nanotubes) and bulk metallic glasses. It has been shown that metallic glasses can be patterned on extremely length scales as small as 10 nm. [39] This may solve problems of nanoimprint lithography where expensive nano-molds made of silicon break easily. Nano-molds made from metallic glasses are easy to fabricate and more durable than silicon molds. The superior electronic, thermal and mechanical properties of bulk metallic glasses compared to polymers make them a good option for developing nanocomposites for electronic application such as field electron emission devices. [40]

Ti40Cu36Pd14Zr10 is believed to be noncarcinogenic, is about three times stronger than titanium, and its elastic modulus nearly matches bones. It has a high wear resistance and does not produce abrasion powder. The alloy does not undergo shrinkage on solidification. A surface structure can be generated that is biologically attachable by surface modification using laser pulses, allowing better joining with bone. [41]

Laser powder bed fusion (LPBF) has been used to process Zr-based bulk metallic glass (BMG) [42] for biomedical applications. Zr-based BMGs shows good biocompatibility, supporting osteoblastic cell growth similar to Ti-6Al-4V alloy. [43] The favorable response coupled with the ability to tailor surface properties through SLM highlights the promise of SLM Zr- based BMGs like AMLOY-ZR01 for orthopaedic implant applications. However, their degradation under inflammatory conditions requires further investigation.[ citation needed ]

Mg60Zn35Ca5 is under investigation as a biomaterial for implantation into bones as screws, pins, or plates, to fix fractures. Unlike traditional steel or titanium, this material dissolves in organisms at a rate of roughly 1 millimeter per month and is replaced with bone tissue. This speed can be adjusted by varying the zinc content. [44] [45]

Bulk metallic glasses seem to exhibit superior properties. SAM2X5-630 is claimed to have the highest recorded plasticity for any steel alloy, essentially the highest threshold at which a material can withstand an impact without deforming permanently. The alloy can withstand pressure and stress of up to 12.5 GPa (123,000 atm) without permanent deformation. This is the highest impact resistance of any bulk metallic glass ever recorded as of 2016. This makes it as an attractive option for armour material and other applications that require high stress tolerance. [46] [47] [48]

Additive manufacturing

One challenge when synthesising a metallic glass is that the techniques often only produce very small samples, due to the need for high cooling rates. 3D-printing methods have been suggested as a method to create larger bulk samples. Selective laser melting (SLM) is one example of an additive manufacturing method that has been used to make iron based metallic glasses. [49] [50] Laser foil printing (LFP) is another method where foils of the amorphous metals are stacked and welded together, layer by layer. [51]

Modeling and theory

Bulk metallic glasses have been modeled using atomic scale simulations (within the density functional theory framework) in a similar manner to high entropy alloys. [52] [53] This has allowed predictions to be made about their behavior, stability and many more properties. As such, new bulk metallic glass systems can be tested and tailored for a specific purpose (e.g. bone replacement or aero-engine component) without as much empirical searching of the phase space or experimental trial and error. Ab-initio molecular dynamics (MD) simulation confirmed that the atomic surface structure of a Ni-Nb metallic glass observed by scanning tunneling microscopy is a kind of spectroscopy. At negative applied bias it visualizes only one soft of atoms (Ni) owing to the structure of electronic density of states calculated using ab-initio MD simulation. [54]

One common way to try and understand the electronic properties of amorphous metals is by comparing them to liquid metals, which are similarly disordered, and for which established theoretical frameworks exist. For simple amorphous metals, good estimations can be reached by semi-classical modelling of the movement of individual electrons using the Boltzmann equation and approximating the scattering potential as the superposition of the electronic potential of each nucleus in the surrounding metal. To simplify the calculations, the electronic potentials of the atomic nuclei can be truncated to give a muffin-tin pseudopotential. In this theory, there are two main effects that govern the change of resistivity with increasing temperatures. Both are based on the induction of vibrations of the atomic nuclei of the metal as temperatures increase. One is, that the atomic structure gets increasingly smeared out as the exact positions of the atomic nuclei get less and less well defined. The other is the introduction of phonons. While the smearing out generally decreases the resistivity of the metal, the introduction of phonons generally adds scattering sites and therefore increases resistivity. Together, they can explain the anomalous decrease of resistivity in amorphous metals, as the first part outweighs the second. In contrast to regular crystalline metals, the phonon contribution in an amorphous metal does not get frozen out at low temperatures. Due to the lack of a defined crystal structure, there are always some phonon wavelengths that can be excited. [55] [56] While this semi-classical approach holds well for many amorphous metals, it generally breaks down under more extreme conditions. At very low temperatures, the quantum nature of the electrons leads to long range interference effects of the electrons with each other in what is called "weak localization effects". [26] In very strongly disordered metals, impurities in the atomic structure can induce bound electronic states in what is called "Anderson localization", effectively binding the electrons and inhibiting their movement. [57]

See also

Related Research Articles

In condensed matter physics and materials science, an amorphous solid is a solid that lacks the long-range order that is characteristic of a crystal. The terms "glass" and "glassy solid" are sometimes used synonymously with amorphous solid; however, these terms refer specifically to amorphous materials that undergo a glass transition. Examples of amorphous solids include glasses, metallic glasses, and certain types of plastics and polymers.

<span class="mw-page-title-main">Glass</span> Transparent non-crystalline solid material

Glass is an amorphous (non-crystalline) solid. Because it is often transparent and chemically inert, glass has found widespread practical, technological, and decorative use in window panes, tableware, and optics. Some common objects made of glass are named after the material, e.g. "glass", "glasses", "magnifying glass".

<span class="mw-page-title-main">Metal</span> Type of material

A metal is a material that, when polished or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. These properties are all associated with having electrons available at the Fermi level, as against nonmetallic materials which do not. Metals are typically ductile and malleable.

<span class="mw-page-title-main">Liquidmetal</span> Amorphous metal alloy brand associated with Caltech

Liquidmetal and Vitreloy are commercial names of a series of amorphous metal alloys developed by a California Institute of Technology (Caltech) research team and marketed by Liquidmetal Technologies. Liquidmetal alloys combine a number of desirable material features, including high tensile strength, excellent corrosion resistance, very high coefficient of restitution and excellent anti-wearing characteristics, while also being able to be heat-formed in processes similar to thermoplastics. Despite the name, they are not liquid at room temperature.

Chalcogenide glass is a glass containing one or more heavy chalcogens. Chalcogenide materials behave rather differently from oxides, in particular their lower band gaps contribute to very dissimilar optical and electrical properties.

<span class="mw-page-title-main">Bioactive glass</span> Surface reactive glass-ceramic biomaterial

Bioactive glasses are a group of surface reactive glass-ceramic biomaterials and include the original bioactive glass, Bioglass. The biocompatibility and bioactivity of these glasses has led them to be used as implant devices in the human body to repair and replace diseased or damaged bones. Most bioactive glasses are silicate-based glasses that are degradable in body fluids and can act as a vehicle for delivering ions beneficial for healing. Bioactive glass is differentiated from other synthetic bone grafting biomaterials, in that it is the only one with anti-infective and angiogenic properties.

<span class="mw-page-title-main">Heusler compound</span> Type of metallic alloy

Heusler compounds are magnetic intermetallics with face-centered cubic crystal structure and a composition of XYZ (half-Heuslers) or X2YZ (full-Heuslers), where X and Y are transition metals and Z is in the p-block. The term derives from the name of German mining engineer and chemist Friedrich Heusler, who studied such a compound (Cu2MnAl) in 1903. Many of these compounds exhibit properties relevant to spintronics, such as magnetoresistance, variations of the Hall effect, ferro-, antiferro-, and ferrimagnetism, half- and semimetallicity, semiconductivity with spin filter ability, superconductivity, topological band structure and are actively studied as thermoelectric materials. Their magnetism results from a double-exchange mechanism between neighboring magnetic ions. Manganese, which sits at the body centers of the cubic structure, was the magnetic ion in the first Heusler compound discovered. (See the Bethe–Slater curve for details of why this happens.)

<span class="mw-page-title-main">Zirconium hydride</span> Alloy of zirconium and hydrogen

Zirconium hydride describes an alloy made by combining zirconium and hydrogen. Hydrogen acts as a hardening agent, preventing dislocations in the zirconium atom crystal lattice from sliding past one another. Varying the amount of hydrogen and the form of its presence in the zirconium hydride controls qualities such as the hardness, ductility, and tensile strength of the resulting zirconium hydride. Zirconium hydride with increased hydrogen content can be made harder and stronger than zirconium, but such zirconium hydride is also less ductile than zirconium.

GeSbTe (germanium-antimony-tellurium or GST) is a phase-change material from the group of chalcogenide glasses used in rewritable optical discs and phase-change memory applications. Its recrystallization time is 20 nanoseconds, allowing bitrates of up to 35 Mbit/s to be written and direct overwrite capability up to 106 cycles. It is suitable for land-groove recording formats. It is often used in rewritable DVDs. New phase-change memories are possible using n-doped GeSbTe semiconductor. The melting point of the alloy is about 600 °C (900 K) and the crystallization temperature is between 100 and 150 °C.

<span class="mw-page-title-main">Polyamorphism</span> Ability of a substance to exist in more than one distinct amorphous state

Polyamorphism is the ability of a substance to exist in several different amorphous modifications. It is analogous to the polymorphism of crystalline materials. Many amorphous substances can exist with different amorphous characteristics. However, polyamorphism requires two distinct amorphous states with a clear, discontinuous (first-order) phase transition between them. When such a transition occurs between two stable liquid states, a polyamorphic transition may also be referred to as a liquid–liquid phase transition.

<span class="mw-page-title-main">Melt spinning</span> Technique of shooting liquid metal on cooled rotating drum

Melt spinning is a metal forming technique that is typically used to form thin ribbons of metal or alloys with a particular atomic structure.

An amorphous brazing foil (ABF) is a form of eutectic amorphous metal that serves as a filler metal in brazing operations. ABFs are composed of various transition metals blended with metalloids like silicon, boron, and phosphorus. By precisely managing the concentration of these metalloids to achieve or approach the eutectic point, these alloys can undergo rapid solidification to form a ductile, amorphous foil. This process allows the ABF to effectively bond materials in the brazing process, providing a strong and seamless joint.

<span class="mw-page-title-main">Solid</span> State of matter

Solid is one of the four fundamental states of matter along with liquid, gas, and plasma. The molecules in a solid are closely packed together and contain the least amount of kinetic energy. A solid is characterized by structural rigidity and resistance to a force applied to the surface. Unlike a liquid, a solid object does not flow to take on the shape of its container, nor does it expand to fill the entire available volume like a gas. The atoms in a solid are bound to each other, either in a regular geometric lattice, or irregularly. Solids cannot be compressed with little pressure whereas gases can be compressed with little pressure because the molecules in a gas are loosely packed.

<span class="mw-page-title-main">Glass transition</span> Reversible transition in amorphous materials

The glass–liquid transition, or glass transition, is the gradual and reversible transition in amorphous materials from a hard and relatively brittle "glassy" state into a viscous or rubbery state as the temperature is increased. An amorphous solid that exhibits a glass transition is called a glass. The reverse transition, achieved by supercooling a viscous liquid into the glass state, is called vitrification.

<span class="mw-page-title-main">Fragility (glass physics)</span> Property of glass forming liquids

In glass sciences, fragility or "kinetic fragility" is a concept proposed by the Australian-American physical chemist C. Austen Angell. Fragility characterizes how rapidly the viscosity of a glass forming liquid approaches a very large value approximately 1012 Pa s during cooling. At this viscosity, the liquid is "frozen" into a solid and the corresponding temperature is known as the glass transition temperature Tg. Materials with a higher fragility have a more rapid increase in viscosity as approaching Tg, while those with a lower fragility have a slower increase in viscosity. Fragility is one of the most important concepts to understand viscous liquids and glasses. Fragility may be related to the presence of dynamical heterogeneity in glass forming liquids, as well as to the breakdown of the usual Stokes–Einstein relationship between viscosity and diffusion. Fragility has no direct relationship with the colloquial meaning of the word "fragility", which more closely relates to the brittleness of a material.

Bioresorbablemetallic glass is a type of amorphous metal, which is based on the Mg-Zn-Ca ternary system. Containing only elements which already exist inside the human body, namely Mg, Zn and Ca, these amorphous alloys are a special type of biodegradable metal.

Splat quenching is a metallurgical, metal morphing technique used for forming metals with a particular crystal structure by means of extremely rapid quenching, or cooling.

Rigidity theory, or topological constraint theory, is a tool for predicting properties of complex networks based on their composition. It was introduced by James Charles Phillips in 1979 and 1981, and refined by Michael Thorpe in 1983. Inspired by the study of the stability of mechanical trusses as pioneered by James Clerk Maxwell, and by the seminal work on glass structure done by William Houlder Zachariasen, this theory reduces complex molecular networks to nodes constrained by rods, thus filtering out microscopic details that ultimately don't affect macroscopic properties. An equivalent theory was developed by P. K. Gupta and A. R. Cooper in 1990, where rather than nodes representing atoms, they represented unit polytopes. An example of this would be the SiO tetrahedra in pure glassy silica. This style of analysis has applications in biology and chemistry, such as understanding adaptability in protein-protein interaction networks. Rigidity theory applied to the molecular networks arising from phenotypical expression of certain diseases may provide insights regarding their structure and function.

<span class="mw-page-title-main">High-entropy alloy</span> Alloys with high proportions of several metals

High-entropy alloys (HEAs) are alloys that are formed by mixing equal or relatively large proportions of (usually) five or more elements. Prior to the synthesis of these substances, typical metal alloys comprised one or two major components with smaller amounts of other elements. For example, additional elements can be added to iron to improve its properties, thereby creating an iron-based alloy, but typically in fairly low proportions, such as the proportions of carbon, manganese, and others in various steels. Hence, high-entropy alloys are a novel class of materials. The term "high-entropy alloys" was coined by Taiwanese scientist Jien-Wei Yeh because the entropy increase of mixing is substantially higher when there is a larger number of elements in the mix, and their proportions are more nearly equal. Some alternative names, such as multi-component alloys, compositionally complex alloys and multi-principal-element alloys are also suggested by other researchers.

<span class="mw-page-title-main">Nanostructured film</span>

A nanostructured film is a film resulting from engineering of nanoscale features, such as dislocations, grain boundaries, defects, or twinning. In contrast to other nanostructures, such as nanoparticles, the film itself may be up to several microns thick, but possesses a large concentration of nanoscale features homogeneously distributed throughout the film. Like other nanomaterials, nanostructured films have sparked much interest as they possess unique properties not found in bulk, non-nanostructured material of the same composition. In particular, nanostructured films have been the subject of recent research due to their superior mechanical properties, including strength, hardness, and corrosion resistance compared to regular films of the same material. Examples of nanostructured films include those produced by grain boundary engineering, such as nano-twinned ultra-fine grain copper, or dual phase nanostructuring, such as crystalline metal and amorphous metallic glass nanocomposites.

References

  1. Some scientists only consider amorphous metals produced by rapid cooling from a liquid state to be glasses. Materials scientists commonly consider a glass to be any solid non-crystalline material, regardless of how it is produced.
  2. Ojovan MI, Lee WB (2010). "Connectivity and glass transition in disordered oxide systems". Journal of Non-Crystalline Solids. 356 (44–49): 2534. Bibcode:2010JNCS..356.2534O. doi:10.1016/j.jnoncrysol.2010.05.012.
  3. Luborski FE (1983). Amorphous Metallic Alloys. Butterworths. pp. 3–7. ISBN   0408110309.
  4. Zhang C, Ouyang D, Pauly S, Liu L (1 July 2021). "3D printing of bulk metallic glasses". Materials Science and Engineering: R: Reports. 145: 100625. doi:10.1016/j.mser.2021.100625. ISSN   0927-796X. S2CID   236233658.
  5. Klement W, Willens RH, Duwez P (1960). "Non-crystalline Structure in Solidified Gold-Silicon Alloys". Nature. 187 (4740): 869–870. Bibcode:1960Natur.187..869K. doi:10.1038/187869b0. S2CID   4203025.
  6. Libermann H, Graham C (1976). "Production Of Amorphous Alloy Ribbons And Effects Of Apparatus Parameters On Ribbon Dimensions". IEEE Transactions on Magnetics. 12 (6): 921. Bibcode:1976ITM....12..921L. doi:10.1109/TMAG.1976.1059201.
  7. Roya R, Majumdara AK (1981). "Thermomagnetic and transport properties of metglas 2605 SC and 2605". Journal of Magnetism and Magnetic Materials. 25 (1): 83–89. Bibcode:1981JMMM...25...83R. doi:10.1016/0304-8853(81)90150-5.
  8. 1 2 Chen HS, Inoue A, Masumoto T (July 1985). "Two-stage enthalpy relaxation behaviour of (Fe0.5Ni0.5)83P17 and (Fe0.5Ni0.5)83B17 amorphous alloys upon annealing". Journal of Materials Science. 20 (7): 2417–2438. Bibcode:1985JMatS..20.2417C. doi:10.1007/BF00556071. S2CID   136986230.
  9. Yokoyama Y, Inoue A (2007). "Compositional Dependence of Thermal and Mechanical Properties of Quaternary Zr-Cu-Ni-Al Bulk Glassy Alloys". Materials Transactions. 48 (6): 1282–1287. doi: 10.2320/matertrans.MF200622 .
  10. Inoue A, Zhang T (1996). "Fabrication of Bulk Glassy Zr55Al10Ni5Cu30 Alloy of 30 mm in Diameter by a Suction Casting Method". Materials Transactions, JIM. 37 (2): 185–187. doi: 10.2320/matertrans1989.37.185 .
  11. Qin C, Zhang W, Zhang Q, Asami K, Inoue A (31 January 2011). "Chemical characteristics of the passive surface films formed on newly developed Cu–Zr–Ag–Al bulk metallic glasses". Journal of Materials Research. 23 (8): 2091–2098. doi:10.1557/JMR.2008.0284. S2CID   136849540.
  12. Inoue A, Sobu S, Louzguine DV, Kimura H, Sasamori K (2011). "Ultrahigh strength Al-based amorphous alloys containing Sc". Journal of Materials Research. 19 (5): 1539. Bibcode:2004JMatR..19.1539I. doi:10.1557/JMR.2004.0206. S2CID   136853150.
  13. Chen H, Turnbull D (August 1969). "Formation, stability and structure of palladium-silicon based alloy glasses". Acta Metallurgica. 17 (8): 1021–1031. doi:10.1016/0001-6160(69)90048-0.
  14. Kui HW, Greer AL, Turnbull D (15 September 1984). "Formation of bulk metallic glass by fluxing". Applied Physics Letters. 45 (6): 615–616. Bibcode:1984ApPhL..45..615K. doi:10.1063/1.95330.
  15. Peker A, Johnson WL (25 October 1993). "A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5" (PDF). Applied Physics Letters. 63 (17): 2342–2344. Bibcode:1993ApPhL..63.2342P. doi:10.1063/1.110520.
  16. Inoue A (2000). "Stabilization of metallic supercooled liquid and bulk amorphous alloys". Acta Materialia. 48 (1): 279–306. Bibcode:2000AcMat..48..279I. CiteSeerX   10.1.1.590.5472 . doi:10.1016/S1359-6454(99)00300-6.
  17. "University Of Virginia Scientists Discover Amorphous Steel Material is three times stronger than conventional steel and non-magnetic". University of Virginia (Press release). 2 July 2004. Archived from the original on 30 October 2014.
  18. WO 2006091875A2,Poon, Joseph S.&Shiflet, Gary J.,"Amorphous steel composites with enhanced strengths, elastic properties and ductilities",published 2006-08-31
  19. "Glassy Steel". ORNL Review. 38 (1). 2005. Archived from the original on 8 April 2005. Retrieved 26 December 2005.
  20. Ponnambalam V, Poon SJ, Shiflet GJ (2011). "Fe-based bulk metallic glasses with diameter thickness larger than one centimeter". Journal of Materials Research. 19 (5): 1320. Bibcode:2004JMatR..19.1320P. doi:10.1557/JMR.2004.0176. S2CID   138846816.
  21. "Artificial intelligence accelerates discovery of metallic glass". Physorg. 13 April 2018. Retrieved 14 April 2018.
  22. Ren F, Ward L, Williams T, Laws KJ, Wolverton C, Hattrick-Simpers J, et al. (13 April 2018). "Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments". Science Advances. 4 (4): eaaq1566. Bibcode:2018SciA....4.1566R. doi:10.1126/sciadv.aaq1566. PMC   5898831 . PMID   29662953.
  23. Gloriant T (2003). "Microhardness and abrasive wear resistance of metallic glasses and nanostructured composite materials". Journal of Non-Crystalline Solids. 316 (1): 96–103. Bibcode:2003JNCS..316...96G. doi:10.1016/s0022-3093(02)01941-5.
  24. Inoue A, Takeuchi A (April 2011). "Recent development and application products of bulk glassy alloys". Acta Materialia. 59 (6): 2243–2267. Bibcode:2011AcMat..59.2243I. doi:10.1016/j.actamat.2010.11.027.
  25. Suryanarayana C, Inoue A (3 June 2011). Bulk Metallic Glasses. CRC Press. ISBN   978-1-4398-5969-8.[ page needed ]
  26. 1 2 Gantmakher VF (December 2011). "Mooij rule and weak localization". JETP Letters. 94 (8): 626–628. arXiv: 1112.0429 . Bibcode:2011JETPL..94..626G. doi:10.1134/S0021364011200033. ISSN   0021-3640. S2CID   119258416.
  27. Mooij JH (1973). "Electrical conduction in concentrated disordered transition metal alloys". Physica Status Solidi A. 17 (2): 521–530. Bibcode:1973PSSAR..17..521M. doi:10.1002/pssa.2210170217. ISSN   1521-396X. S2CID   96960303.
  28. Ciuchi S, Di Sante D, Dobrosavljević V, Fratini S (December 2018). "The origin of Mooij correlations in disordered metals". npj Quantum Materials. 3 (1): 44. arXiv: 1802.00065 . Bibcode:2018npjQM...3...44C. doi:10.1038/s41535-018-0119-y. ISSN   2397-4648. S2CID   55811938.
  29. Buckel W, Hilsch R (1956). "Supraleitung und elektrischer Widerstand neuartiger Zinn-Wismut-Legierungen". Z. Phys. 146 (1): 27–38. Bibcode:1956ZPhy..146...27B. doi:10.1007/BF01326000. S2CID   119405703.
  30. Baggioli M, Setty C, Zaccone A (2020). "Effective theory of superconductivity in strongly coupled amorphous materials". Physical Review B. 101 (21): 214502. arXiv: 2001.00404 . Bibcode:2020PhRvB.101u4502B. doi:10.1103/PhysRevB.101.214502. S2CID   209531947.
  31. Russell A, Lee KL (2005). Structure-Property Relations in Nonferrous Metals. John Wiley & Sons. p. 92. Bibcode:2005srnm.book.....R. ISBN   978-0-471-70853-7.
  32. "Amorphous Alloy Surpasses Steel And Titanium". NASA . Retrieved 19 September 2018.
  33. Telford M (2004). "The case for bulk metallic glass". Materials Today. 7 (3): 36–43. doi: 10.1016/S1369-7021(04)00124-5 .
  34. Ning SR, Gao J, Wang YG (2010). "Review on Applications of Low Loss Amorphous Metals in Motors". Advanced Materials Research. 129–131: 1366–1371. doi:10.4028/www.scientific.net/AMR.129-131.1366. S2CID   138234876.
  35. Nishiyama N, Amiya K, Inoue A (October 2007). "Novel applications of bulk metallic glass for industrial products". Journal of Non-Crystalline Solids. 353 (32–40): 3615–3621. Bibcode:2007JNCS..353.3615N. doi:10.1016/j.jnoncrysol.2007.05.170.
  36. Nishiyama N, Amiya K, Inoue A (March 2007). "Recent progress of bulk metallic glasses for strain-sensing devices". Materials Science and Engineering: A. 449–451: 79–83. doi:10.1016/j.msea.2006.02.384.
  37. Inoue A, Wang X, Zhang W (2008). "Developments and applications of bulk metal glasses". Reviews on Advanced Materials Science. 18 (1): 1–9. CiteSeerX   10.1.1.455.4625 .
  38. Saotome Y, Iwazaki H (2000). "Superplastic extrusion of microgear shaft of 10 μm in module". Microsystem Technologies. 6 (4): 126. Bibcode:2000MiTec...6..126S. doi:10.1007/s005420050180. S2CID   137549527.
  39. Kumar G, Tang HX, Schroers J (2009). "Nanomoulding with amorphous metals". Nature. 457 (7231): 868–872. Bibcode:2009Natur.457..868K. doi:10.1038/nature07718. PMID   19212407. S2CID   4337794.
  40. Hojati-Talemi P (2011). "High performance bulk metallic glass/carbon nanotube composite cathodes for electron field emission". Applied Physics Letters. 99 (19): 194104. Bibcode:2011ApPhL..99s4104H. doi:10.1063/1.3659898.
  41. Maruyama M (11 June 2009). "Japanese Universities Develop Ti-based Metallic Glass for Artificial Finger Joint". Tech-on.
  42. Marattukalam JJ, Pacheco V, Karlsson D, Riekehr L, Lindwall J, Forsberg F, et al. (1 May 2020). "Development of process parameters for selective laser melting of a Zr-based bulk metallic glass". Additive Manufacturing. 33: 101124. doi:10.1016/j.addma.2020.101124. ISSN   2214-8604.
  43. Larsson L, Marattukalam JJ, Paschalidou EM, Hjörvarsson B, Ferraz N, Persson C (19 December 2022). "Biocompatibility of a Zr-Based Metallic Glass Enabled by Additive Manufacturing". ACS Applied Bio Materials. 5 (12): 5741–5753. doi:10.1021/acsabm.2c00764. ISSN   2576-6422. PMID   36459395.
  44. Brindley L (1 October 2009). "Fixing bones with dissolvable glass". Institute of Physics. Archived from the original on 6 October 2009.
  45. Zberg B, Uggowitzer P, Löffler J (27 September 2009). "MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants". Nature Mater. 8 (11): 887–891. Bibcode:2009NatMa...8..887Z. doi:10.1038/nmat2542. PMID   19783982 . Retrieved 2 November 2024.
  46. Trofimencoff T (9 May 2016). "Engineers Develop Record-Breaking Steel". Engineering.com. Retrieved 24 June 2022.
  47. "Record-breaking steel could be used for body armor, shields for satellites". Jacobs School of Engineering. University of California, San Diego (Press release). Retrieved 24 June 2022.
  48. Els P. "SAM2X5-630: The steel industry fights back!". Writing About Cars. Archived from the original on 24 October 2021. Retrieved 24 June 2022.
  49. Pauly S, Löber L, Petters R, Stoica M, Scudino S, Kühn U, et al. (1 January 2013). "Processing metallic glasses by selective laser melting". Materials Today. 16 (1–2): 37–41. doi: 10.1016/j.mattod.2013.01.018 . ISSN   1369-7021.
  50. Jung HY, Choi SJ, Prashanth KG, Stoica M, Scudino S, Yi S, et al. (5 December 2015). "Fabrication of Fe-based bulk metallic glass by selective laser melting: A parameter study". Materials & Design. 86: 703–708. doi:10.1016/j.matdes.2015.07.145. ISSN   0264-1275.
  51. Shen Y, Li Y, Chen C, Tsai HL (5 March 2017). "3D printing of large, complex metallic glass structures". Materials & Design. 117: 213–222. doi: 10.1016/j.matdes.2016.12.087 . ISSN   0264-1275.
  52. King D, Middleburgh S, Liu A, Tahini H, Lumpkin G, Cortie M (January 2014). "Formation and structure of V–Zr amorphous alloy thin films" (PDF). Acta Materialia. 83: 269–275. Bibcode:2015AcMat..83..269K. doi:10.1016/j.actamat.2014.10.016. hdl: 10453/41214 .
  53. Middleburgh S, Burr P, King D, Edwards L, Lumpkin G, Grimes R (November 2015). "Structural stability and fission product behaviour in U3Si". Journal of Nuclear Materials. 466: 739–744. Bibcode:2015JNuM..466..739M. doi:10.1016/j.jnucmat.2015.04.052.
  54. Belosludov R (2020), "The atomic structure of a bulk metallic glass resolved by scanning tunneling microscopy and ab-initio", Journal of Alloys and Compounds, 816, vol. 816, p. 152680, doi:10.1016/j.jallcom.2019.152680, S2CID   210756852
  55. Ziman JM (1 August 1961). "A theory of the electrical properties of liquid metals. I: The monovalent metals". The Philosophical Magazine. 6 (68): 1013–1034. Bibcode:1961PMag....6.1013Z. doi:10.1080/14786436108243361. ISSN   0031-8086.
  56. Nagel SR (15 August 1977). "Temperature dependence of the resistivity in metallic glasses". Physical Review B. 16 (4): 1694–1698. Bibcode:1977PhRvB..16.1694N. doi:10.1103/PhysRevB.16.1694.
  57. Anderson PW (1 March 1958). "Absence of Diffusion in Certain Random Lattices". Physical Review. 109 (5): 1492–1505. Bibcode:1958PhRv..109.1492A. doi:10.1103/PhysRev.109.1492.

Further reading