Volatility (chemistry)

Last updated
Bromine liquid readily transitions to vapor at room temperature, indicating high volatility. Bromine in a vial.png
Bromine liquid readily transitions to vapor at room temperature, indicating high volatility.

In chemistry, volatility is a material quality which describes how readily a substance vaporizes. At a given temperature and pressure, a substance with high volatility is more likely to exist as a vapour, while a substance with low volatility is more likely to be a liquid or solid. Volatility can also describe the tendency of a vapor to condense into a liquid or solid; less volatile substances will more readily condense from a vapor than highly volatile ones. [1] Differences in volatility can be observed by comparing how fast substances within a group evaporate (or sublimate in the case of solids) when exposed to the atmosphere. A highly volatile substance such as rubbing alcohol (isopropyl alcohol) will quickly evaporate, while a substance with low volatility such as vegetable oil will remain condensed. [2] In general, solids are much less volatile than liquids, but there are some exceptions. Solids that sublimate (change directly from solid to vapor) such as dry ice (solid carbon dioxide) or iodine can vaporize at a similar rate as some liquids under standard conditions. [3]

Contents

Description

Volatility itself has no defined numerical value, but it is often described using vapor pressures or boiling points (for liquids). High vapor pressures indicate a high volatility, while high boiling points indicate low volatility. Vapor pressures and boiling points are often presented in tables and charts that can be used to compare chemicals of interest. Volatility data is typically found through experimentation over a range of temperatures and pressures.

Vapor pressure

A log-lin vapor pressure chart for various liquids Vapor pressure chart.svg
A log-lin vapor pressure chart for various liquids

Vapor pressure is a measurement of how readily a condensed phase forms a vapor at a given temperature. A substance enclosed in a sealed vessel initially at vacuum (no air inside) will quickly fill any empty space with vapor. After the system reaches equilibrium and the rate of evaporation matches the rate of condensation, the vapor pressure can be measured. Increasing the temperature increases the amount of vapor that is formed and thus the vapor pressure. In a mixture, each substance contributes to the overall vapor pressure of the mixture, with more volatile compounds making a larger contribution.

Boiling point

Boiling point is the temperature at which the vapor pressure of a liquid is equal to the surrounding pressure, causing the liquid to rapidly evaporate, or boil. It is closely related to vapor pressure, but is dependent on pressure. The normal boiling point is the boiling point at atmospheric pressure, but it can also be reported at higher and lower pressures. [3]

Contributing factors

Intermolecular forces

Normal boiling point (red) and melting point (blue) of linear alkanes vs. number of carbon atoms. AlkaneBoilingMeltingPoint.png
Normal boiling point (red) and melting point (blue) of linear alkanes vs. number of carbon atoms.

An important factor influencing a substance's volatility is the strength of the interactions between its molecules. Attractive forces between molecules are what holds materials together, and materials with stronger intermolecular forces, such as most solids, are typically not very volatile. Ethanol and dimethyl ether, two chemicals with the same formula (C2H6O), have different volatilities due to the different interactions that occur between their molecules in the liquid phase: ethanol molecules are capable of hydrogen bonding while dimethyl ether molecules are not. [4] The result in an overall stronger attractive force between the ethanol molecules, making it the less volatile substance of the two.

Molecular weight

In general, volatility tends to decrease with increasing molecular mass because larger molecules can participate in more intermolecular bonding, [5] although other factors such as structure and polarity play a significant role. The effect of molecular mass can be partially isolated by comparing chemicals of similar structure (i.e. esters, alkanes, etc.). For instance, linear alkanes exhibit decreasing volatility as the number of carbons in the chain increases.

Applications

Distillation

A crude oil distillation tower. Crude Oil Distillation-en.svg
A crude oil distillation tower.

Knowledge of volatility is often useful in the separation of components from a mixture. When a mixture of condensed substances contains multiple substances with different levels of volatility, its temperature and pressure can be manipulated such that the more volatile components change to a vapor while the less volatile substances remain in the liquid or solid phase. The newly formed vapor can then be discarded or condensed into a separate container. When the vapors are collected, this process is known as distillation. [6]

The process of petroleum refinement utilizes a technique known as fractional distillation, which allows several chemicals of varying volatility to be separated in a single step. Crude oil entering a refinery is composed of many useful chemicals that need to be separated. The crude oil flows into a distillation tower and is heated up, which allows the more volatile components such as butane and kerosene to vaporize. These vapors move up the tower and eventually come in contact with cold surfaces, which causes them to condense and be collected. The most volatile chemical condense at the top of the column while the least volatile chemicals to vaporize condense in the lowest portion. [1]

The difference in volatility between water and ethanol has long been used to produce concentrated alcoholic beverages (many of these are referred to as "liquors"). In order to increase the concentration of ethanol in the product, beverage makers would heat the initial alcohol mixture to a temperature where most of the ethanol vaporizes while most of the water remains liquid. The ethanol vapor is then collected and condensed in a separate container, resulting in a much more concentrated product. [7]

Perfume

Volatility is an important consideration when crafting perfumes. Humans detect odors when aromatic vapors come in contact with receptors in the nose. Ingredients that vaporize quickly after being applied will produce fragrant vapors for a short time before the oils evaporate. Slow-evaporating ingredients can stay on the skin for weeks or even months, but may not produce enough vapors to produce a strong aroma. To prevent these problems, perfume designers carefully consider the volatility of essential oils and other ingredients in their perfumes. Appropriate evaporation rates are achieved by modifying the amount of highly volatile and non-volatile ingredients used. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Boiling point</span> Temperature at which a substance changes from liquid into vapor

The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor.

<span class="mw-page-title-main">Distillation</span> Method of separating mixtures

Distillation, also classical distillation, is the process of separating the component substances of a liquid mixture of two or more chemically discrete substances; the separation process is realized by way of the selective boiling of the mixture and the condensation of the vapors in a still.

<span class="mw-page-title-main">Evaporation</span> Vaporization of a liquid from its surface

Evaporation is a type of vaporization that occurs on the surface of a liquid as it changes into the gas phase. A high concentration of the evaporating substance in the surrounding gas significantly slows down evaporation, such as when humidity affects rate of evaporation of water. When the molecules of the liquid collide, they transfer energy to each other based on how they collide. When a molecule near the surface absorbs enough energy to overcome the vapor pressure, it will escape and enter the surrounding air as a gas. When evaporation occurs, the energy removed from the vaporized liquid will reduce the temperature of the liquid, resulting in evaporative cooling.

<span class="mw-page-title-main">Solution (chemistry)</span> Homogeneous mixture of a solute and a solvent

In chemistry, a solution is defined by IUPAC as "A liquid or solid phase containing more than one substance, when for convenience one substance, which is called the solvent, is treated differently from the other substances, which are called solutes. When, as is often but not necessarily the case, the sum of the mole fractions of solutes is small compared with unity, the solution is called a dilute solution. A superscript attached to the ∞ symbol for a property of a solution denotes the property in the limit of infinite dilution." One important parameter of a solution is the concentration, which is a measure of the amount of solute in a given amount of solution or solvent. The term "aqueous solution" is used when one of the solvents is water.

<span class="mw-page-title-main">Vapor</span> Substances in the gas phase at a temperature lower than its critical point

In physics, a vapor or vapour is a substance in the gas phase at a temperature lower than its critical temperature, which means that the vapor can be condensed to a liquid by increasing the pressure on it without reducing the temperature of the vapor. A vapor is different from an aerosol. An aerosol is a suspension of tiny particles of liquid, solid, or both within a gas.

<span class="mw-page-title-main">Vapor pressure</span> Pressure exerted by a vapor in thermodynamic equilibrium

Vapor pressure or equilibrium vapor pressure is the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases at a given temperature in a closed system. The equilibrium vapor pressure is an indication of a liquid's thermodynamic tendency to evaporate. It relates to the balance of particles escaping from the liquid in equilibrium with those in a coexisting vapor phase. A substance with a high vapor pressure at normal temperatures is often referred to as volatile. The pressure exhibited by vapor present above a liquid surface is known as vapor pressure. As the temperature of a liquid increases, the attractive interactions between liquid molecules become less significant in comparison to the entropy of those molecules in the gas phase, increasing the vapor pressure. Thus, liquids with strong intermolecular interactions are likely to have smaller vapor pressures, with the reverse true for weaker interactions.

<span class="mw-page-title-main">Azeotrope</span> A mixture of two or more liquids whose proportions do not change when the mixture is distilled

An azeotrope or a constant heating point mixture is a mixture of two or more liquids whose proportions cannot be changed by simple distillation. This happens because when an azeotrope is boiled, the vapour has the same proportions of constituents as the unboiled mixture. Knowing an azeotrope's behavior is important for distillation.

Fractional distillation is the separation of a mixture into its component parts, or fractions. Chemical compounds are separated by heating them to a temperature at which one or more fractions of the mixture will vaporize. It uses distillation to fractionate. Generally the component parts have boiling points that differ by less than 25 °C (45 °F) from each other under a pressure of one atmosphere. If the difference in boiling points is greater than 25 °C, a simple distillation is typically used.

Pervaporation is a processing method for the separation of mixtures of liquids by partial vaporization through a non-porous or porous membrane.

<span class="mw-page-title-main">Fractionating column</span> Equipment to separate liquids by distillation

A fractionating column or fractional column is equipment used in the distillation of liquid mixtures to separate the mixture into its component parts, or fractions, based on their differences in volatility. Fractionating columns are used in small-scale laboratory distillations as well as large-scale industrial distillations.

<span class="mw-page-title-main">Sublimation (phase transition)</span> Transition from solid to gas

Sublimation is the transition of a substance directly from the solid to the gas state, without passing through the liquid state. The verb form of sublimation is sublime, or less preferably, sublimate. Sublimate also refers to the product obtained by sublimation. The point at which sublimation occurs rapidly is called critical sublimation point, or simply sublimation point. Notable examples include sublimation of dry ice at room temperature and atmospheric pressure, and that of solid iodine with heating.

<span class="mw-page-title-main">Rotary evaporator</span> Device used in chemical laboratories

A rotary evaporator (rotovap) is a device used in chemical laboratories for the efficient and gentle removal of solvents from samples by evaporation. When referenced in the chemistry research literature, description of the use of this technique and equipment may include the phrase "rotary evaporator", though use is often rather signaled by other language.

<span class="mw-page-title-main">Steam distillation</span> Method of separation in organic chemistry

Steam distillation is a separation process that consists of distilling water together with other volatile and non-volatile components. The steam from the boiling water carries the vapor of the volatiles to a condenser; both are cooled and return to the liquid or solid state, while the non-volatile residues remain behind in the boiling container.

<span class="mw-page-title-main">Continuous distillation</span> Form of distillation

Continuous distillation, a form of distillation, is an ongoing separation in which a mixture is continuously fed into the process and separated fractions are removed continuously as output streams. Distillation is the separation or partial separation of a liquid feed mixture into components or fractions by selective boiling and condensation. The process produces at least two output fractions. These fractions include at least one volatile distillate fraction, which has boiled and been separately captured as a vapor condensed to a liquid, and practically always a bottoms fraction, which is the least volatile residue that has not been separately captured as a condensed vapor.

In thermodynamics and chemical engineering, the vapor–liquid equilibrium (VLE) describes the distribution of a chemical species between the vapor phase and a liquid phase.

<span class="mw-page-title-main">Evaporator</span> Machine transforming a liquid into a gas

An evaporator is a type of heat exchanger device that facilitates evaporation by utilizing conductive and convective heat transfer, which provides the necessary thermal energy for phase transition from liquid to vapour. Within evaporators, a circulating liquid is exposed to an atmospheric or reduced pressure environment causing it to boil at a lower temperature compared to normal atmospheric boiling.

<span class="mw-page-title-main">Condenser (laboratory)</span> Laboratory apparatus used to condense vapors

In chemistry, a condenser is laboratory apparatus used to condense vapors – that is, turn them into liquids – by cooling them down.

<span class="mw-page-title-main">Reflux</span> Condensation of vapors and their return to where they originated

Reflux is a technique involving the condensation of vapors and the return of this condensate to the system from which it originated. It is used in industrial and laboratory distillations. It is also used in chemistry to supply energy to reactions over a long period of time.

A separation process is a method that converts a mixture or a solution of chemical substances into two or more distinct product mixtures, a scientific process of separating two or more substances in order to obtain purity. At least one product mixture from the separation is enriched in one or more of the source mixture's constituents. In some cases, a separation may fully divide the mixture into pure constituents. Separations exploit differences in chemical properties or physical properties between the constituents of a mixture.

Aspen Plus, Aspen HYSYS, ChemCad and MATLAB, PRO are the commonly used process simulators for modeling, simulation and optimization of a distillation process in the chemical industries. Distillation is the technique of preferential separation of the more volatile components from the less volatile ones in a feed followed by condensation. The vapor produced is richer in the more volatile components. The distribution of the component in the two phase is governed by the vapour-liquid equilibrium relationship. In practice, distillation may be carried out by either two principal methods. The first method is based on the production of vapor boiling the liquid mixture to be separated and condensing the vapors without allowing any liquid to return to the still. There is no reflux. The second method is based on the return of part of the condensate to still under such conditions that this returning liquid is brought into intimate contact with the vapors on their way to condenser.

References

  1. 1 2 Felder, Richard (2015). Elementary Principles of Chemical Processes. John Wiley & Sons. pp. 279–281. ISBN   978-1-119-17764-7.
  2. Koretsky, Milo D. (2013). Engineering and Chemical Thermodynamics. John Wiley & Sons. pp. 639–641.
  3. 1 2 Zumdahl, Steven S. (2007). Chemistry . Houghton Mifflin. pp.  460-466. ISBN   978-0-618-52844-8.
  4. Atkins, Peter (2013). Chemical Principles. New York: W.H. Freeman and Company. pp. 368–369. ISBN   978-1-319-07903-1.
  5. "Hydrocarbon boiling points". Archived from the original on 7 February 2023. Retrieved 28 April 2021.
  6. Armarego, Wilfred L. F. (2009). Purification of Laboratory Chemicals . Elsevier. pp.  9-12. ISBN   978-1-85617-567-8.
  7. Kvaalen, Eric. "Alcohol Distillation: Basic Principles, Equipment, Performance Relationships, and Safety". Purdue Extension .
  8. Sell, Charles (2006). The Chemistry of Fragrances . UK: The Royal Society of Chemistry. pp.  200-202. ISBN   978-0-85404-824-3.