Enthalpy of sublimation

Last updated

In thermodynamics, the enthalpy of sublimation, or heat of sublimation, is the heat required to sublimate (change from solid to gas) one mole of a substance at a given combination of temperature and pressure, usually standard temperature and pressure (STP). It is equal to the cohesive energy of the solid. For elemental metals, it is also equal to the standard enthalpy of formation of the gaseous metal atoms. [1] The heat of sublimation is usually expressed in kJ/mol, although the less customary kJ/kg is also encountered.

Contents

Sublimation enthalpies

symbolsubstancesSublimation enthalpy (kJ/mol)
Li lithium 159 [1]
Na sodium 107 [1]
K potassium 89 [1]
Rb rubidium 81 [1]
Cs caesium 76 [1]
Mg magnesium 148 [1]
Ca calcium 178 [1]
Sr strontium 164 [1]
Ba barium 180 [1]
Fe iron 416 [1]
Ni nickel 430 [1]
Cu copper 338 [1]
Zn zinc 131 [1]
Ag silver 285 [1]
W tungsten 849 [1]
Au gold 366 [1]
C graphite 717 [1]
C diamond 715 [1]
Si silicon 456 [1]
Sn tin 302 [1]
Pb lead 195 [1]
I2 iodine 62.4 [2]
C10H8 naphthalene 72.9 [2]
CO2 carbon dioxide 25 [2]

See also

Related Research Articles

Boiling point Temperature at which a substance changes from liquid into vapor

The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor.

<span class="mw-page-title-main">Enthalpy</span> Measure of energy in a thermodynamic system

Enthalpy, a property of a thermodynamic system, is the sum of the system's internal energy and the product of its pressure and volume. It is a state function used in many measurements in chemical, biological, and physical systems at a constant pressure, which is conveniently provided by the large ambient atmosphere. The pressure–volume term expresses the work required to establish the system's physical dimensions, i.e. to make room for it by displacing its surroundings. The pressure-volume term is very small for solids and liquids at common conditions, and fairly small for gases. Therefore, enthalpy is a stand-in for energy in chemical systems; bond, lattice, solvation and other "energies" in chemistry are actually enthalpy differences. As a state function, enthalpy depends only on the final configuration of internal energy, pressure, and volume, not on the path taken to achieve it.

Enthalpy of vaporization Energy to convert a liquid substance to a gas; a function of pressure

The enthalpy of vaporization, also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy (enthalpy) that must be added to a liquid substance to transform a quantity of that substance into a gas. The enthalpy of vaporization is a function of the pressure at which that transformation takes place.

Vapor pressure Pressure exterted by a vapor in thermodynamic equilibrium

Vapor pressure or equilibrium vapor pressure is defined as the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases at a given temperature in a closed system. The equilibrium vapor pressure is an indication of a liquid's evaporation rate. It relates to the tendency of particles to escape from the liquid. A substance with a high vapor pressure at normal temperatures is often referred to as volatile. The pressure exhibited by vapor present above a liquid surface is known as vapor pressure. As the temperature of liquid increases, the kinetic energy of its molecules also increases. As the kinetic energy of the molecules increases, the number of molecules transitioning into a vapor also increases, thereby increasing the vapor pressure.

Melting point Temperature at which a solid turns liquid

The melting point of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends on pressure and is usually specified at a standard pressure such as 1 atmosphere or 100 kPa.

In chemistry and thermodynamics, the standard enthalpy of formation or standard heat of formation of a compound is the change of enthalpy during the formation of 1 mole of the substance from its constituent elements, with all substances in their standard states. The standard pressure value p = 105 Pa(= 100 kPa = 1 bar) is recommended by IUPAC, although prior to 1982 the value 1.00 atm (101.325 kPa) was used. There is no standard temperature. Its symbol is ΔfH. The superscript Plimsoll on this symbol indicates that the process has occurred under standard conditions at the specified temperature (usually 25 °C or 298.15 K). Standard states are as follows:

  1. For a gas: the hypothetical state it would have assuming it obeyed the ideal gas equation at a pressure of 1 bar
  2. For a gaseous or solid solute present in a diluted ideal solution: the hypothetical state of concentration of the solute of exactly one mole per liter (1 M) at a pressure of 1 bar extrapolated from infinite dilution
  3. For a pure substance or a solvent in a condensed state (a liquid or a solid): the standard state is the pure liquid or solid under a pressure of 1 bar
  4. For an element: the form in which the element is most stable under 1 bar of pressure. One exception is phosphorus, for which the most stable form at 1 bar is black phosphorus, but white phosphorus is chosen as the standard reference state for zero enthalpy of formation.
<span class="mw-page-title-main">Latent heat</span> Thermodynamic phase transition energy

Latent heat is energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process — usually a first-order phase transition.

In chemistry, the standard molar entropy is the entropy content of one mole of pure substance at a standard state of pressure and any temperature of interest. These are often chosen to be the standard temperature and pressure.

<span class="mw-page-title-main">Freezing</span> Phase transition in which a liquid turns into a solid due to a decrease in thermal energy

Freezing, also known as solidification, is a phase transition where a liquid turns into a solid when its temperature is lowered below its freezing point. In accordance with the internationally established definition, freezing means the solidification phase change of a liquid or the liquid content of a substance, usually due to cooling.

In chemistry, the standard state of a material is a reference point used to calculate its properties under different conditions. A superscript circle ° or a Plimsoll (⦵) character is used to designate a thermodynamic quantity in the standard state, such as change in enthalpy (ΔH°), change in entropy (ΔS°), or change in Gibbs free energy (ΔG°). The degree symbol has become widespread, although the Plimsoll is recommended in standards, see discussion about typesetting below.

The standard enthalpy of reaction for a chemical reaction is the difference between total reactant and total product molar enthalpies, calculated for substances in their standard states. This can in turn be used to predict the total chemical bond energy liberated or bound during reaction, as long as the enthalpy of mixing is also accounted for.

Sublimation (phase transition) Transition of a substance directly from the solid to the gas state

Sublimation is the transition of a substance directly from the solid to the gas state, without passing through the liquid state. Sublimation is an endothermic process that occurs at temperatures and pressures below a substance's triple point in its phase diagram, which corresponds to the lowest pressure at which the substance can exist as a liquid. The reverse process of sublimation is deposition or desublimation, in which a substance passes directly from a gas to a solid phase. Sublimation has also been used as a generic term to describe a solid-to-gas transition (sublimation) followed by a gas-to-solid transition (deposition). While vaporization from liquid to gas occurs as evaporation from the surface if it occurs below the boiling point of the liquid, and as boiling with formation of bubbles in the interior of the liquid if it occurs at the boiling point, there is no such distinction for the solid-to-gas transition which always occurs as sublimation from the surface.

The Born–Haber cycle is an approach to analyze reaction energies. It was named after the two German scientists Max Born and Fritz Haber, who developed it in 1919. It was also independently formulated by Kasimir Fajans and published concurrently in the same issue of the same journal. The cycle is concerned with the formation of an ionic compound from the reaction of a metal with a halogen or other non-metallic element such as oxygen.

In chemistry, the enthalpy of atomization is the enthalpy change that accompanies the total separation of all atoms in a chemical substance. This is often represented by the symbol or All bonds in the compound are broken in atomization and none are formed, so enthalpies of atomization are always positive. The associated standard enthalpy is known as the standard enthalpy of atomization, ΔatH/(kJ mol−1), at 298.15 K and 100 kPa.

Thermodynamic databases for pure substances Thermodynamic properties list

Thermodynamic databases contain information about thermodynamic properties for substances, the most important being enthalpy, entropy, and Gibbs free energy. Numerical values of these thermodynamic properties are collected as tables or are calculated from thermodynamic datafiles. Data is expressed as temperature-dependent values for one mole of substance at the standard pressure of 101.325 kPa, or 100 kPa. Unfortunately, both of these definitions for the standard condition for pressure are in use.

This glossary of chemistry terms is a list of terms and definitions relevant to chemistry, including chemical laws, diagrams and formulae, laboratory tools, glassware, and equipment. Chemistry is a physical science concerned with the composition, structure, and properties of matter, as well as the changes it undergoes during chemical reactions; it features an extensive vocabulary and a significant amount of jargon.

The Glossary of fuel cell terms lists the definitions of many terms used within the fuel cell industry. The terms in this fuel cell glossary may be used by fuel cell industry associations, in education material and fuel cell codes and standards to name but a few.

<span class="mw-page-title-main">Enthalpy of fusion</span> Enthalpy change when a substance melts

In thermodynamics, the enthalpy of fusion of a substance, also known as (latent) heat of fusion, is the change in its enthalpy resulting from providing energy, typically heat, to a specific quantity of the substance to change its state from a solid to a liquid, at constant pressure. For example, when melting 1 kg of ice, 333.55 kJ of energy is absorbed with no temperature change. The heat of solidification is equal and opposite.

Camille Matignon French chemist

Arthème Camille Matignon was a French chemist noted for his work in thermochemistry. He was a member of the Académie des Sciences, President of the French Chemical Society and an honorary Fellow of the British Chemical Society.

Platinum tetrafluoride Chemical compound

Platinum tetrafluoride is the inorganic compound with the chemical formula PtF
4
. In the solid state, the compound features platinum(IV) in octahedral coordination geometry.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Oxtoby, D. W; Gillis, H.P., Butler, L. J. (2015).Principles of Modern Chemistry, Brooks Cole. Appendix D. ISBN 978-1305079113
  2. 1 2 3 Chickos, James S.; Acree, William E. (2002). "Enthalpies of Sublimation of Organic and Organometallic Compounds. 1910–2001". Journal of Physical and Chemical Reference Data. 31 (2): 537–698. doi:10.1063/1.1475333. ISSN   0047-2689.