Spin foam

Last updated

In physics, the topological structure of spinfoam or spin foam [1] consists of two-dimensional faces representing a configuration required by functional integration to obtain a Feynman's path integral description of quantum gravity. These structures are employed in loop quantum gravity as a version of quantum foam.

Contents

In loop quantum gravity

The covariant formulation of loop quantum gravity provides the best formulation of the dynamics of the theory of quantum gravity – a quantum field theory where the invariance under diffeomorphisms of general relativity applies. The resulting path integral represents a sum over all the possible configurations of spin foam.[ how? ]

Spin network

A spin network is a two-dimensional graph, together with labels on its vertices and edges which encode aspects of a spatial geometry.

A spin network is defined as a diagram like the Feynman diagram which makes a basis of connections between the elements of a differentiable manifold for the Hilbert spaces defined over them, and for computations of amplitudes between two different hypersurfaces of the manifold. Any evolution of the spin network provides a spin foam over a manifold of one dimension higher than the dimensions of the corresponding spin network.[ clarification needed ] A spin foam is analogous to quantum history.[ why? ]

Spacetime

Spin networks provide a language to describe the quantum geometry of space. Spin foam does the same job for spacetime.

Spacetime can be defined as a superposition of spin foams, which is a generalized Feynman diagram where instead of a graph, a higher-dimensional complex is used. In topology this sort of space is called a 2-complex. A spin foam is a particular type of 2-complex, with labels for vertices, edges and faces. The boundary of a spin foam is a spin network, just as in the theory of manifolds, where the boundary of an n-manifold is an (n-1)-manifold.

In loop quantum gravity, the present spin foam theory has been inspired by the work of Ponzano–Regge model. The idea was introduced by Reisenberger and Rovelli in 1997, [2] and later developed into the Barrett–Crane model. The formulation that is used nowadays is commonly called EPRL after the names of the authors of a series of seminal papers, [3] but the theory has also seen fundamental contributions from the work of many others, such as Laurent Freidel (FK model) and Jerzy Lewandowski (KKL model).

Definition

The summary partition function for a spin foam model is

with:

See also

Related Research Articles

<span class="mw-page-title-main">Quantum gravity</span> Description of gravity using discrete values

Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics. It deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the vicinity of black holes or similar compact astrophysical objects, as well as in the early stages of the universe moments after the Big Bang.

<span class="mw-page-title-main">Loop quantum gravity</span> Theory of quantum gravity, merging quantum mechanics and general relativity

Loop quantum gravity (LQG) is a theory of quantum gravity that incorporates matter of the Standard Model into the framework established for the intrinsic quantum gravity case. It is an attempt to develop a quantum theory of gravity based directly on Albert Einstein's geometric formulation rather than the treatment of gravity as a mysterious mechanism (force). As a theory, LQG postulates that the structure of space and time is composed of finite loops woven into an extremely fine fabric or network. These networks of loops are called spin networks. The evolution of a spin network, or spin foam, has a scale on the order of a Planck length, approximately 10−35 meters, and smaller scales are meaningless. Consequently, not just matter, but space itself, prefers an atomic structure.

<span class="mw-page-title-main">Spin network</span> Diagram used to represent quantum field theory calculations

In physics, a spin network is a type of diagram which can be used to represent states and interactions between particles and fields in quantum mechanics. From a mathematical perspective, the diagrams are a concise way to represent multilinear functions and functions between representations of matrix groups. The diagrammatic notation can thus greatly simplify calculations.

The Chern–Simons theory is a 3-dimensional topological quantum field theory of Schwarz type developed by Edward Witten. It was discovered first by mathematical physicist Albert Schwarz. It is named after mathematicians Shiing-Shen Chern and James Harris Simons, who introduced the Chern–Simons 3-form. In the Chern–Simons theory, the action is proportional to the integral of the Chern–Simons 3-form.

<span class="mw-page-title-main">Supergravity</span> Modern theory of gravitation that combines supersymmetry and general relativity

In theoretical physics, supergravity is a modern field theory that combines the principles of supersymmetry and general relativity; this is in contrast to non-gravitational supersymmetric theories such as the Minimal Supersymmetric Standard Model. Supergravity is the gauge theory of local supersymmetry. Since the supersymmetry (SUSY) generators form together with the Poincaré algebra a superalgebra, called the super-Poincaré algebra, supersymmetry as a gauge theory makes gravity arise in a natural way.

The Immirzi parameter is a numerical coefficient appearing in loop quantum gravity (LQG), a nonperturbative theory of quantum gravity. The Immirzi parameter measures the size of the quantum of area in Planck units. As a result, its value is currently fixed by matching the semiclassical black hole entropy, as calculated by Stephen Hawking, and the counting of microstates in loop quantum gravity.

The history of loop quantum gravity spans more than three decades of intense research.

<span class="mw-page-title-main">Wheeler–DeWitt equation</span> Field equation, part of a theory that attempts to combine quantum mechanics and general relativity

The Wheeler–DeWitt equation for theoretical physics and applied mathematics, is a field equation attributed to John Archibald Wheeler and Bryce DeWitt. The equation attempts to mathematically combine the ideas of quantum mechanics and general relativity, a step towards a theory of quantum gravity.

In mathematics, the nonmetricity tensor in differential geometry is the covariant derivative of the metric tensor. It is therefore a tensor field of order three. It vanishes for the case of Riemannian geometry and can be used to study non-Riemannian spacetimes.

The Barrett–Crane model is a model in quantum gravity, first published in 1998, which was defined using the Plebanski action.

In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.

<span class="mw-page-title-main">Canonical quantum gravity</span> A formulation of general relativity

In physics, canonical quantum gravity is an attempt to quantize the canonical formulation of general relativity. It is a Hamiltonian formulation of Einstein's general theory of relativity. The basic theory was outlined by Bryce DeWitt in a seminal 1967 paper, and based on earlier work by Peter G. Bergmann using the so-called canonical quantization techniques for constrained Hamiltonian systems invented by Paul Dirac. Dirac's approach allows the quantization of systems that include gauge symmetries using Hamiltonian techniques in a fixed gauge choice. Newer approaches based in part on the work of DeWitt and Dirac include the Hartle–Hawking state, Regge calculus, the Wheeler–DeWitt equation and loop quantum gravity.

<span class="mw-page-title-main">Causal sets</span> Approach to quantum gravity using discrete spacetime

The causal sets program is an approach to quantum gravity. Its founding principles are that spacetime is fundamentally discrete and that spacetime events are related by a partial order. This partial order has the physical meaning of the causality relations between spacetime events.

In quantum field theory, gauge gravitation theory is the effort to extend Yang–Mills theory, which provides a universal description of the fundamental interactions, to describe gravity.

<span class="mw-page-title-main">Group field theory</span> Quantum field theory with a Lie group base manifold

Group field theory (GFT) is a quantum field theory in which the base manifold is taken to be a Lie group. It is closely related to background independent quantum gravity approaches such as loop quantum gravity, the spin foam formalism and causal dynamical triangulation. Its perturbative expansion can be interpreted as spin foams and simplicial pseudo-manifolds (depending on the representation of the fields). Thus, its partition function defines a non-perturbative sum over all simplicial topologies and geometries, giving a path integral formulation of quantum spacetime.

In the field of theoretical physics, the Holst action is an equivalent formulation of the Palatini action for General Relativity (GR) in terms of vierbeins by adding a part of a topological term (Nieh-Yan) which does not alter the classical equations of motion as long as there is no torsion,

N = 4 supersymmetric Yang–Mills (SYM) theory is a relativistic conformally invariant Lagrangian gauge theory describing the interactions of fermions via gauge field exchanges. In D=4 spacetime dimensions, N=4 is the maximal number of supersymmetries or supersymmetry charges.

In the ADM formulation of general relativity one splits spacetime into spatial slices and time, the basic variables are taken to be the induced metric, , on the spatial slice, and its conjugate momentum variable related to the extrinsic curvature, ,. These are the metric canonical coordinates.

<span class="mw-page-title-main">Loop representation in gauge theories and quantum gravity</span> Description of gauge theories using loop operators

Attempts have been made to describe gauge theories in terms of extended objects such as Wilson loops and holonomies. The loop representation is a quantum hamiltonian representation of gauge theories in terms of loops. The aim of the loop representation in the context of Yang–Mills theories is to avoid the redundancy introduced by Gauss gauge symmetries allowing to work directly in the space of physical states. The idea is well known in the context of lattice Yang–Mills theory. Attempts to explore the continuous loop representation was made by Gambini and Trias for canonical Yang–Mills theory, however there were difficulties as they represented singular objects. As we shall see the loop formalism goes far beyond a simple gauge invariant description, in fact it is the natural geometrical framework to treat gauge theories and quantum gravity in terms of their fundamental physical excitations.

<span class="mw-page-title-main">Furry's theorem</span> Theorem in quantum physics

In quantum electrodynamics, Furry's theorem states that if a Feynman diagram consists of a closed loop of fermion lines with an odd number of vertices, its contribution to the amplitude vanishes. As a corollary, a single photon cannot arise from the vacuum or be absorbed by it. The theorem was first derived by Wendell H. Furry in 1937, as a direct consequence of the conservation of energy and charge conjugation symmetry.

References

  1. Perez, Alejandro (2004). "[gr-qc/0409061] Introduction to Loop Quantum Gravity and Spin Foams". arXiv: gr-qc/0409061 .
  2. Reisenberger, Michael; Rovelli, Carlo (1997). ""Sum over surfaces" form of loop quantum gravity". Physical Review D. 56 (6): 3490–3508. arXiv: gr-qc/9612035 . Bibcode:1997PhRvD..56.3490R. doi:10.1103/PhysRevD.56.3490.
  3. Engle, Jonathan; Pereira, Roberto; Rovelli, Carlo; Livine, Etera (2008). "LQG vertex with finite Immirzi parameter". Nuclear Physics B. 799 (1–2): 136–149. arXiv: 0711.0146 . Bibcode:2008NuPhB.799..136E. doi:10.1016/j.nuclphysb.2008.02.018.