Quantum field theory in curved spacetime

Last updated

In theoretical physics, quantum field theory in curved spacetime (QFTCS) [1] is an extension of quantum field theory from Minkowski spacetime to a general curved spacetime. This theory uses a semi-classical approach; it treats spacetime as a fixed, classical background, while giving a quantum-mechanical description of the matter and energy propagating through that spacetime. A general prediction of this theory is that particles can be created by time-dependent gravitational fields (multigraviton pair production), or by time-independent gravitational fields that contain horizons. The most famous example of the latter is the phenomenon of Hawking radiation emitted by black holes.

Contents

Overview

Ordinary quantum field theories, which form the basis of standard model, are defined in flat Minkowski space, which is an excellent approximation when it comes to describing the behavior of microscopic particles in weak gravitational fields like those found on Earth. In order to describe situations in which gravity is strong enough to influence (quantum) matter, yet not strong enough to require quantization itself, physicists have formulated quantum field theories in curved spacetime. These theories rely on general relativity to describe a curved background spacetime, and define a generalized quantum field theory to describe the behavior of quantum matter within that spacetime.

For non-zero cosmological constants, on curved spacetimes quantum fields lose their interpretation as asymptotic particles. [2] Only in certain situations, such as in asymptotically flat spacetimes (zero cosmological curvature), can the notion of incoming and outgoing particle be recovered, thus enabling one to define an S-matrix. Even then, as in flat spacetime, the asymptotic particle interpretation depends on the observer (i.e., different observers may measure different numbers of asymptotic particles on a given spacetime).

Another observation is that unless the background metric tensor has a global timelike Killing vector, there is no way to define a vacuum or ground state canonically. The concept of a vacuum is not invariant under diffeomorphisms. This is because a mode decomposition of a field into positive and negative frequency modes is not invariant under diffeomorphisms. If t(t) is a diffeomorphism, in general, the Fourier transform of exp[ikt(t)] will contain negative frequencies even if k > 0. Creation operators correspond to positive frequencies, while annihilation operators correspond to negative frequencies. This is why a state which looks like a vacuum to one observer cannot look like a vacuum state to another observer; it could even appear as a heat bath under suitable hypotheses.

Since the end of the 1980s, the local quantum field theory approach due to Rudolf Haag and Daniel Kastler has been implemented in order to include an algebraic version of quantum field theory in curved spacetime. Indeed, the viewpoint of local quantum physics is suitable to generalize the renormalization procedure to the theory of quantum fields developed on curved backgrounds. Several rigorous results concerning QFT in the presence of a black hole have been obtained. In particular the algebraic approach allows one to deal with the problems mentioned above arising from the absence of a preferred reference vacuum state, the absence of a natural notion of particle and the appearance of unitarily inequivalent representations of the algebra of observables. [3] [4]

Applications

Using perturbation theory in quantum field theory in curved spacetime geometry is known as the semiclassical approach to quantum gravity. This approach studies the interaction of quantum fields in a fixed classical spacetime and among other thing predicts the creation of particles by time-varying spacetimes [5] and Hawking radiation. [6] The latter can be understood as a manifestation of the Unruh effect where an accelerating observer observes black body radiation. [7] Other prediction of quantum fields in curved spaces include, [8] for example, the radiation emitted by a particle moving along a geodesic [9] [10] [11] [12] and the interaction of Hawking radiation with particles outside black holes. [13] [14] [15] [16]

This formalism is also used to predict the primordial density perturbation spectrum arising in different models of cosmic inflation. These predictions are calculated using the Bunch–Davies vacuum or modifications thereto. [17]

Approximation to quantum gravity

The theory of quantum field theory in curved spacetime may be considered as an intermediate step towards quantum gravity. [18] QFT in curved spacetime is expected to be a viable approximation to the theory of quantum gravity when spacetime curvature is not significant on the Planck scale. [19] [20] [21] However, the fact that the true theory of quantum gravity remains unknown means that the precise criteria for when QFT on curved spacetime is a good approximation are also unknown. [2] :1

Gravity is not renormalizable in QFT, so merely formulating QFT in curved spacetime is not a true theory of quantum gravity.

See also

Related Research Articles

<span class="mw-page-title-main">Black hole</span> Object that has a no-return boundary

A black hole is a region of spacetime where gravity is so strong that nothing, including light and other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of no escape is called the event horizon. Although it has a great effect on the fate and circumstances of an object crossing it, it has no locally detectable features according to general relativity. In many ways, a black hole acts like an ideal black body, as it reflects no light. Moreover, quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is of the order of billionths of a kelvin for stellar black holes, making it essentially impossible to observe directly.

<span class="mw-page-title-main">General relativity</span> Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalises special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations.

<span class="mw-page-title-main">Quantum gravity</span> Description of gravity using discrete values

Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics. It deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the vicinity of black holes or similar compact astrophysical objects, such as neutron stars as well as in the early stages of the universe moments after the Big Bang.

A wormhole is a hypothetical structure connecting disparate points in spacetime, and is based on a special solution of the Einstein field equations.

Hawking radiation is the theoretical thermal black-body radiation released outside a black hole's event horizon. This is counterintuitive because once ordinary electromagnetic radiation is inside the event horizon, it cannot escape. It is named after the physicist Stephen Hawking, who developed a theoretical argument for its existence in 1974. Hawking radiation is predicted to be extremely faint and is many orders of magnitude below the current best telescopes' detecting ability.

The no-hair theorem states that all stationary black hole solutions of the Einstein–Maxwell equations of gravitation and electromagnetism in general relativity can be completely characterized by only three independent externally observable classical parameters: mass, electric charge, and angular momentum. Other characteristics are uniquely determined by these three parameters, and all other information about the matter that formed a black hole or is falling into it "disappears" behind the black-hole event horizon and is therefore permanently inaccessible to external observers after the black hole "settles down". Physicist John Archibald Wheeler expressed this idea with the phrase "black holes have no hair", which was the origin of the name.

<span class="mw-page-title-main">Black hole thermodynamics</span> Area of study

In physics, black hole thermodynamics is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons. As the study of the statistical mechanics of black-body radiation led to the development of the theory of quantum mechanics, the effort to understand the statistical mechanics of black holes has had a deep impact upon the understanding of quantum gravity, leading to the formulation of the holographic principle.

In theoretical physics, the anti-de Sitter/conformal field theory correspondence is a conjectured relationship between two kinds of physical theories. On one side are anti-de Sitter spaces (AdS) which are used in theories of quantum gravity, formulated in terms of string theory or M-theory. On the other side of the correspondence are conformal field theories (CFT) which are quantum field theories, including theories similar to the Yang–Mills theories that describe elementary particles.

The chronology protection conjecture is a hypothesis first proposed by Stephen Hawking that laws of physics beyond those of standard general relativity prevent time travel on all but microscopic scales - even when the latter theory states that it should be possible. The permissibility of time travel is represented mathematically by the existence of closed timelike curves in some solutions to the field equations of general relativity. The chronology protection conjecture should be distinguished from chronological censorship under which every closed timelike curve passes through an event horizon, which might prevent an observer from detecting the causal violation.

The Immirzi parameter is a numerical coefficient appearing in loop quantum gravity (LQG), a nonperturbative theory of quantum gravity. The Immirzi parameter measures the size of the quantum of area in Planck units. As a result, its value is currently fixed by matching the semiclassical black hole entropy, as calculated by Stephen Hawking, and the counting of microstates in loop quantum gravity.

The Unruh effect is a theoretical prediction in quantum field theory that states that an observer who is uniformly accelerating through empty space will perceive a thermal bath. This means that even in the absence of any external heat sources, an accelerating observer will detect particles and experience a temperature. In contrast, an inertial observer in the same region of spacetime would observe no temperature.

Micro black holes, also called mini black holes or quantum mechanical black holes, are hypothetical tiny black holes, for which quantum mechanical effects play an important role. The concept that black holes may exist that are smaller than stellar mass was introduced in 1971 by Stephen Hawking.

<span class="mw-page-title-main">Black hole information paradox</span> Mystery of disappearance of information in a black hole

The black hole information paradox is a paradox that appears when the predictions of quantum mechanics and general relativity are combined. The theory of general relativity predicts the existence of black holes that are regions of spacetime from which nothing — not even light — can escape. In the 1970s, Stephen Hawking applied the semi-classical approach of quantum field theory in curved spacetime to such systems and found that an isolated black hole would emit a form of radiation called Hawking radiation. Hawking also argued that the detailed form of the radiation would be independent of the initial state of the black hole, and would depend only on its mass, electric charge and angular momentum.

In black hole physics and inflationary cosmology, the trans-Planckian problem is the problem of the appearance of quantities beyond the Planck scale, which raise doubts on the physical validity of some results in these two areas, since one expects the physical laws to suffer radical modifications beyond the Planck scale.

Induced gravity is an idea in quantum gravity that spacetime curvature and its dynamics emerge as a mean field approximation of underlying microscopic degrees of freedom, similar to the fluid mechanics approximation of Bose–Einstein condensates. The concept was originally proposed by Andrei Sakharov in 1967.

<span class="mw-page-title-main">Bekenstein bound</span> Upper limit on entropy in physics

In physics, the Bekenstein bound is an upper limit on the thermodynamic entropy S, or Shannon entropy H, that can be contained within a given finite region of space which has a finite amount of energy—or conversely, the maximal amount of information required to perfectly describe a given physical system down to the quantum level. It implies that the information of a physical system, or the information necessary to perfectly describe that system, must be finite if the region of space and the energy are finite. In computer science this implies that non-finite models such as Turing machines are not realizable as finite devices.

In acoustics and fluid dynamics, an acoustic metric is a metric that describes the signal-carrying properties of a given particulate medium.

A black star is a gravitational object composed of matter. It is a theoretical alternative to the black hole concept from general relativity. The theoretical construct was created through the use of semiclassical gravity theory. A similar structure should also exist for the Einstein–Maxwell–Dirac equations system, which is the (super) classical limit of quantum electrodynamics, and for the Einstein–Yang–Mills–Dirac system, which is the (super) classical limit of the standard model.

<span class="mw-page-title-main">Superfluid vacuum theory</span> Theory of fundamental physics

Superfluid vacuum theory (SVT), sometimes known as the BEC vacuum theory, is an approach in theoretical physics and quantum mechanics where the fundamental physical vacuum is considered as a superfluid or as a Bose–Einstein condensate (BEC).

A black hole firewall is a hypothetical phenomenon where an observer falling into a black hole encounters high-energy quanta at the event horizon. The "firewall" phenomenon was proposed in 2012 by physicists Ahmed Almheiri, Donald Marolf, Joseph Polchinski, and James Sully as a possible solution to an apparent inconsistency in black hole complementarity. The proposal is sometimes referred to as the AMPS firewall, an acronym for the names of the authors of the 2012 paper. The potential inconsistency pointed out by AMPS had been pointed out earlier by Samir Mathur who used the argument in favour of the fuzzball proposal. The use of a firewall to resolve this inconsistency remains controversial, with physicists divided as to the solution to the paradox.

References

  1. Kay, B.S. (2023). "Quantum Field Theory in Curved Spacetime (2nd Edition) (article prepared for the second edition of the Encyclopaedia of Mathematical Physics, edited by M. Bojowald and R.J. Szabo, to be published by Elsevier)" (PDF).
  2. 1 2 Wald, R. M. (1995). Quantum field theory in curved space-time and black hole thermodynamics. Chicago U. ISBN   0-226-87025-1.
  3. Fewster, C. J. (2008). "Lectures on quantum field theory in curved spacetime (Lecture Note 39/2008 Max Planck Institute for Mathematics in the Natural Sciences (2008))" (PDF).
  4. Khavkine, Igor; Moretti, Valter (2015), Brunetti, Romeo; Dappiaggi, Claudio; Fredenhagen, Klaus; Yngvason, Jakob (eds.), "Algebraic QFT in Curved Spacetime and Quasifree Hadamard States: An Introduction", Advances in Algebraic Quantum Field Theory, Mathematical Physics Studies, Cham: Springer International Publishing, pp. 191–251, arXiv: 1412.5945 , Bibcode:2014arXiv1412.5945K, doi:10.1007/978-3-319-21353-8_5, ISBN   978-3-319-21352-1, S2CID   119179440 , retrieved 2022-01-14
  5. Parker, L. (1968-08-19). "Particle Creation in Expanding Universes". Physical Review Letters. 21 (8): 562–564. Bibcode:1968PhRvL..21..562P. doi:10.1103/PhysRevLett.21.562.
  6. Hawking, S. W. (1993-05-01), "Particle Creation by Black Holes", Euclidean Quantum Gravity, World Scientific, pp. 167–188, doi:10.1142/9789814539395_0011, ISBN   978-981-02-0515-7 , retrieved 2021-08-15
  7. Crispino, Luís C. B.; Higuchi, Atsushi; Matsas, George E. A. (2008-07-01). "The Unruh effect and its applications". Reviews of Modern Physics. 80 (3): 787–838. arXiv: 0710.5373 . Bibcode:2008RvMP...80..787C. doi:10.1103/RevModPhys.80.787. hdl: 11449/24446 . S2CID   119223632.
  8. Birrell, N. D. (1982). Quantum fields in curved space. P. C. W. Davies. Cambridge [Cambridgeshire]: Cambridge University Press. ISBN   0-521-23385-2. OCLC   7462032.
  9. Crispino, L. C. B.; Higuchi, A.; Matsas, G. E. A. (November 1999). "Scalar radiation emitted from a source rotating around a black hole". Classical and Quantum Gravity. 17 (1): 19–32. arXiv: gr-qc/9901006 . doi:10.1088/0264-9381/17/1/303. ISSN   0264-9381. S2CID   14018854.
  10. Crispino, L. C. B.; Higuchi, A.; Matsas, G. E. A. (September 2016). "Corrigendum: Scalar radiation emitted from a source rotating around a black hole (2000 Class. Quantum Grav. 17 19)". Classical and Quantum Gravity. 33 (20): 209502. doi:10.1088/0264-9381/33/20/209502. hdl: 11449/162073 . ISSN   0264-9381. S2CID   126192949.
  11. Oliveira, Leandro A.; Crispino, Luís C. B.; Higuchi, Atsushi (2018-02-16). "Scalar radiation from a radially infalling source into a Schwarzschild black hole in the framework of quantum field theory". The European Physical Journal C. 78 (2): 133. Bibcode:2018EPJC...78..133O. doi: 10.1140/epjc/s10052-018-5604-8 . ISSN   1434-6052. S2CID   55070002.
  12. Brito, João P. B.; Bernar, Rafael P.; Crispino, Luís C. B. (2020-06-11). "Synchrotron geodesic radiation in Schwarzschild--de Sitter spacetime". Physical Review D. 101 (12): 124019. arXiv: 2006.08887 . Bibcode:2020PhRvD.101l4019B. doi:10.1103/PhysRevD.101.124019. S2CID   219708236.
  13. Higuchi, Atsushi; Matsas, George E. A.; Sudarsky, Daniel (1998-10-22). "Interaction of Hawking radiation with static sources outside a Schwarzschild black hole". Physical Review D. 58 (10): 104021. arXiv: gr-qc/9806093 . Bibcode:1998PhRvD..58j4021H. doi:10.1103/PhysRevD.58.104021. hdl: 11449/65552 . S2CID   14575175.
  14. Crispino, Luís C. B.; Higuchi, Atsushi; Matsas, George E. A. (1998-09-22). "Interaction of Hawking radiation and a static electric charge". Physical Review D. 58 (8): 084027. arXiv: gr-qc/9804066 . Bibcode:1998PhRvD..58h4027C. doi:10.1103/PhysRevD.58.084027. hdl: 11449/65534 . S2CID   15522105.
  15. Castiñeiras, J.; Costa e Silva, I. P.; Matsas, G. E. A. (2003-03-27). "Do static sources respond to massive scalar particles from the Hawking radiation as uniformly accelerated ones do in the inertial vacuum?". Physical Review D. 67 (6): 067502. arXiv: gr-qc/0211053 . Bibcode:2003PhRvD..67f7502C. doi:10.1103/PhysRevD.67.067502. hdl: 11449/23239 . S2CID   33007353.
  16. Castiñeiras, J.; Costa e Silva, I. P.; Matsas, G. E. A. (2003-10-31). "Interaction of Hawking radiation with static sources in de Sitter and Schwarzschild--de Sitter spacetimes". Physical Review D. 68 (8): 084022. arXiv: gr-qc/0308015 . Bibcode:2003PhRvD..68h4022C. doi:10.1103/PhysRevD.68.084022. hdl: 11449/23527 . S2CID   41250020.
  17. Greene, Brian R.; Parikh, Maulik K.; van der Schaar, Jan Pieter (28 April 2006). "Universal correction to the inflationary vacuum". Journal of High Energy Physics. 2006 (4): 057. arXiv: hep-th/0512243 . Bibcode:2006JHEP...04..057G. doi:10.1088/1126-6708/2006/04/057. S2CID   16290999.
  18. Brunetti, Romeo; Fredenhagen, Klaus; Rejzner, Katarzyna (2016). "Quantum Gravity from the Point of View of Locally Covariant Quantum Field Theory". Communications in Mathematical Physics. 345 (3): 741–779. arXiv: 1306.1058 . Bibcode:2016CMaPh.345..741B. doi: 10.1007/s00220-016-2676-x . S2CID   55608399. Quantum field theory on curved spacetime, which might be considered as an intermediate step towards quantum gravity, already has no distinguished particle interpretation.
  19. Bär, Christian; Fredenhagen, Klaus (2009). "Preface". Quantum Field Theory on Curved Spacetimes: Concepts and Mathematical Foundations. Springer. ISBN   9783642027802. In particular, due to the weakness of gravitational forces, the back reaction of the spacetime metric to the energy momentum tensor of the quantum fields may be neglected, in a first approximation, and one is left with the problem of quantum field theory on Lorentzian manifolds. Surprisingly, this seemingly modest approach leads to far-reaching conceptual and mathematical problems and to spectacular predictions, the most famous one being the Hawking radiation of black holes.
  20. Kay, Bernard S. (2006). "Quantum field theory in curved spacetime". Encyclopedia of Mathematical Physics. Academic Press (Elsevier). pp. 202–214. arXiv: gr-qc/0601008 . One expects it to be a good approximation to full quantum gravity provided the typical frequencies of the gravitational background are very much less than the Planck frequency [...] and provided, with a suitable measure for energy, the energy of created particles is very much less than the energy of the background gravitational field or of its matter sources.
  21. Yang, Run-Qiu; Liu, Hui; Zhu, Shining; Luo, Le; Cai, Rong-Gen (2020). "Simulating quantum field theory in curved spacetime with quantum many-body systems". Physical Review Research. 2 (2): 023107. arXiv: 1906.01927 . Bibcode:2020PhRvR...2b3107Y. doi: 10.1103/PhysRevResearch.2.023107 . S2CID   218502756. Quantum field theory in curved spacetime is a semiclassical approximation to quantum gravity theory, where the curved background spacetime is treated classically, while the matter fields in the curved spacetime are quantized.

Further reading