Soler model

Last updated

The soler model is a quantum field theory model of Dirac fermions interacting via four fermion interactions in 3 spatial and 1 time dimension. It was introduced in 1938 by Dmitri Ivanenko [1] and re-introduced and investigated in 1970 by Mario Soler [2] as a toy model of self-interacting electron.

Contents

This model is described by the Lagrangian density

where is the coupling constant, in the Feynman slash notations, . Here , , are Dirac gamma matrices.

The corresponding equation can be written as

,

where , , and are the Dirac matrices. In one dimension, this model is known as the massive Gross–Neveu model. [3] [4]

Generalizations

A commonly considered generalization is

with , or even

,

where is a smooth function.

Features

Internal symmetry

Besides the unitary symmetry U(1), in dimensions 1, 2, and 3 the equation has SU(1,1) global internal symmetry. [5]

Renormalizability

The Soler model is renormalizable by the power counting for and in one dimension only, and non-renormalizable for higher values of and in higher dimensions.

Solitary wave solutions

The Soler model admits solitary wave solutions of the form where is localized (becomes small when is large) and is a real number. [6]

Reduction to the massive Thirring model

In spatial dimension 2, the Soler model coincides with the massive Thirring model, due to the relation , with the relativistic scalar and the charge-current density. The relation follows from the identity , for any . [7]

See also

Related Research Articles

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain combination of two Weyl spinors, specifically, a bispinor that transforms "spinorially" under the action of the Lorentz group.

In physics, Ginzburg–Landau theory, often called Landau–Ginzburg theory, named after Vitaly Ginzburg and Lev Landau, is a mathematical physical theory used to describe superconductivity. In its initial form, it was postulated as a phenomenological model which could describe type-I superconductors without examining their microscopic properties. One GL-type superconductor is the famous YBCO, and generally all Cuprates.

<span class="mw-page-title-main">Relativistic wave equations</span> Wave equations respecting special and general relativity

In physics, specifically relativistic quantum mechanics (RQM) and its applications to particle physics, relativistic wave equations predict the behavior of particles at high energies and velocities comparable to the speed of light. In the context of quantum field theory (QFT), the equations determine the dynamics of quantum fields. The solutions to the equations, universally denoted as ψ or Ψ, are referred to as "wave functions" in the context of RQM, and "fields" in the context of QFT. The equations themselves are called "wave equations" or "field equations", because they have the mathematical form of a wave equation or are generated from a Lagrangian density and the field-theoretic Euler–Lagrange equations.

In particle physics, Yukawa's interaction or Yukawa coupling, named after Hideki Yukawa, is an interaction between particles according to the Yukawa potential. Specifically, it is a scalar field ϕ and a Dirac field ψ of the type

<span class="mw-page-title-main">Nonlinear Schrödinger equation</span>

In theoretical physics, the (one-dimensional) nonlinear Schrödinger equation (NLSE) is a nonlinear variation of the Schrödinger equation. It is a classical field equation whose principal applications are to the propagation of light in nonlinear optical fibers and planar waveguides and to Bose–Einstein condensates confined to highly anisotropic cigar-shaped traps, in the mean-field regime. Additionally, the equation appears in the studies of small-amplitude gravity waves on the surface of deep inviscid (zero-viscosity) water; the Langmuir waves in hot plasmas; the propagation of plane-diffracted wave beams in the focusing regions of the ionosphere; the propagation of Davydov's alpha-helix solitons, which are responsible for energy transport along molecular chains; and many others. More generally, the NLSE appears as one of universal equations that describe the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Unlike the linear Schrödinger equation, the NLSE never describes the time evolution of a quantum state. The 1D NLSE is an example of an integrable model.

In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment is −9.2847647043(28)×10−24 J⋅T−1. The electron magnetic moment has been measured to an accuracy of 1.7×10−13 relative to the Bohr magneton.

The Schrödinger–Newton equation, sometimes referred to as the Newton–Schrödinger or Schrödinger–Poisson equation, is a nonlinear modification of the Schrödinger equation with a Newtonian gravitational potential, where the gravitational potential emerges from the treatment of the wave function as a mass density, including a term that represents interaction of a particle with its own gravitational field. The inclusion of a self-interaction term represents a fundamental alteration of quantum mechanics. It can be written either as a single integro-differential equation or as a coupled system of a Schrödinger and a Poisson equation. In the latter case it is also referred to in the plural form.

In physics, the Majorana equation is a relativistic wave equation. It is named after the Italian physicist Ettore Majorana, who proposed it in 1937 as a means of describing fermions that are their own antiparticle. Particles corresponding to this equation are termed Majorana particles, although that term now has a more expansive meaning, referring to any fermionic particle that is its own anti-particle.

In differential geometry and mathematical physics, a spin connection is a connection on a spinor bundle. It is induced, in a canonical manner, from the affine connection. It can also be regarded as the gauge field generated by local Lorentz transformations. In some canonical formulations of general relativity, a spin connection is defined on spatial slices and can also be regarded as the gauge field generated by local rotations.

The Thirring model is an exactly solvable quantum field theory which describes the self-interactions of a Dirac field in (1+1) dimensions.

In quantum mechanics, the Pauli equation or Schrödinger–Pauli equation is the formulation of the Schrödinger equation for spin-½ particles, which takes into account the interaction of the particle's spin with an external electromagnetic field. It is the non-relativistic limit of the Dirac equation and can be used where particles are moving at speeds much less than the speed of light, so that relativistic effects can be neglected. It was formulated by Wolfgang Pauli in 1927.

In mathematical physics, spacetime algebra (STA) is a name for the Clifford algebra Cl1,3(R), or equivalently the geometric algebra G(M4). According to David Hestenes, spacetime algebra can be particularly closely associated with the geometry of special relativity and relativistic spacetime.

In physics, relativistic quantum mechanics (RQM) is any Poincaré covariant formulation of quantum mechanics (QM). This theory is applicable to massive particles propagating at all velocities up to those comparable to the speed of light c, and can accommodate massless particles. The theory has application in high energy physics, particle physics and accelerator physics, as well as atomic physics, chemistry and condensed matter physics. Non-relativistic quantum mechanics refers to the mathematical formulation of quantum mechanics applied in the context of Galilean relativity, more specifically quantizing the equations of classical mechanics by replacing dynamical variables by operators. Relativistic quantum mechanics (RQM) is quantum mechanics applied with special relativity. Although the earlier formulations, like the Schrödinger picture and Heisenberg picture were originally formulated in a non-relativistic background, a few of them also work with special relativity.

In quantum field theory, a non-topological soliton (NTS) is a soliton field configuration possessing, contrary to a topological one, a conserved Noether charge and stable against transformation into usual particles of this field for the following reason. For fixed charge Q, the mass sum of Q free particles exceeds the energy (mass) of the NTS so that the latter is energetically favorable to exist.

In theoretical physics, in the context of M-theory, the action for the N=8 M2 branes in full is :

<span class="mw-page-title-main">Weyl equation</span> Relativistic wave equation describing massless fermions

In physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions.

<span class="mw-page-title-main">Nonlinear Dirac equation</span> Dirac equation for self-interacting fermions

In quantum field theory, the nonlinear Dirac equation is a model of self-interacting Dirac fermions. This model is widely considered in quantum physics as a toy model of self-interacting electrons.

<span class="mw-page-title-main">Dirac equation in curved spacetime</span> Generalization of the Dirac equation

In mathematical physics, the Dirac equation in curved spacetime is a generalization of the Dirac equation from flat spacetime to curved spacetime, a general Lorentzian manifold.

In mathematical physics, the Gordon decomposition of the Dirac current is a splitting of the charge or particle-number current into a part that arises from the motion of the center of mass of the particles and a part that arises from gradients of the spin density. It makes explicit use of the Dirac equation and so it applies only to "on-shell" solutions of the Dirac equation.

References

  1. Dmitri Ivanenko (1938). "Notes to the theory of interaction via particles" (PDF). Zh. Eksp. Teor. Fiz. 8: 260–266.
  2. Mario Soler (1970). "Classical, Stable, Nonlinear Spinor Field with Positive Rest Energy". Phys. Rev. D. 1 (10): 2766–2769. Bibcode:1970PhRvD...1.2766S. doi:10.1103/PhysRevD.1.2766.
  3. Gross, David J. and Neveu, André (1974). "Dynamical symmetry breaking in asymptotically free field theories". Phys. Rev. D. 10 (10): 3235–3253. Bibcode:1974PhRvD..10.3235G. doi:10.1103/PhysRevD.10.3235.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. S.Y. Lee & A. Gavrielides (1975). "Quantization of the localized solutions in two-dimensional field theories of massive fermions". Phys. Rev. D. 12 (12): 3880–3886. Bibcode:1975PhRvD..12.3880L. doi:10.1103/PhysRevD.12.3880.
  5. Galindo, A. (1977). "A remarkable invariance of classical Dirac Lagrangians". Lettere al Nuovo Cimento. 20 (6): 210–212. doi:10.1007/BF02785129. S2CID   121750127.
  6. Thierry Cazenave & Luis Vàzquez (1986). "Existence of localized solutions for a classical nonlinear Dirac field". Comm. Math. Phys. 105 (1): 35–47. Bibcode:1986CMaPh.105...35C. doi:10.1007/BF01212340. S2CID   121018463.
  7. J. Cuevas-Maraver; P.G. Kevrekidis; A. Saxena; A. Comech & R. Lan (2016). "Stability of solitary waves and vortices in a 2D nonlinear Dirac model". Phys. Rev. Lett. 116 (21): 214101. arXiv: 1512.03973 . Bibcode:2016PhRvL.116u4101C. doi:10.1103/PhysRevLett.116.214101. PMID   27284659. S2CID   15719805.