In theoretical physics, the BRST formalism, or BRST quantization (where the BRST refers to the last names of Carlo Becchi, Alain Rouet, Raymond Stora and Igor Tyutin) denotes a relatively rigorous mathematical approach to quantizing a field theory with a gauge symmetry. Quantization rules in earlier quantum field theory (QFT) frameworks resembled "prescriptions" or "heuristics" more than proofs, especially in non-abelian QFT, where the use of "ghost fields" with superficially bizarre properties is almost unavoidable for technical reasons related to renormalization and anomaly cancellation.
The BRST global supersymmetry introduced in the mid-1970s was quickly understood to rationalize the introduction of these Faddeev–Popov ghosts and their exclusion from "physical" asymptotic states when performing QFT calculations. Crucially, this symmetry of the path integral is preserved in loop order, and thus prevents introduction of counterterms which might spoil renormalizability of gauge theories. Work by other authors [ by whom? – Discuss ] a few years later related the BRST operator to the existence of a rigorous alternative to path integrals when quantizing a gauge theory.
Only in the late 1980s, when QFT was reformulated in fiber bundle language for application to problems in the topology of low-dimensional manifolds (topological quantum field theory), did it become apparent that the BRST "transformation" is fundamentally geometrical in character. In this light, "BRST quantization" becomes more than an alternate way to arrive at anomaly-cancelling ghosts. It is a different perspective on what the ghost fields represent, why the Faddeev–Popov method works, and how it is related to the use of Hamiltonian mechanics to construct a perturbative framework. The relationship between gauge invariance and "BRST invariance" forces the choice of a Hamiltonian system whose states are composed of "particles" according to the rules familiar from the canonical quantization formalism. This esoteric consistency condition therefore comes quite close to explaining how quanta and fermions arise in physics to begin with.
In certain cases, notably gravity and supergravity, BRST must be superseded by a more general formalism, the Batalin–Vilkovisky formalism.
BRST quantization is a differential geometric approach to performing consistent, anomaly-free perturbative calculations in a non-abelian gauge theory. The analytical form of the BRST "transformation" and its relevance to renormalization and anomaly cancellation were described by Carlo Maria Becchi, Alain Rouet, and Raymond Stora in a series of papers culminating in the 1976 "Renormalization of gauge theories". The equivalent transformation and many of its properties were independently discovered by Igor Viktorovich Tyutin. Its significance for rigorous canonical quantization of a Yang–Mills theory and its correct application to the Fock space of instantaneous field configurations were elucidated by Taichiro Kugo and Izumi Ojima. Later work by many authors, notably Thomas Schücker and Edward Witten, has clarified the geometric significance of the BRST operator and related fields and emphasized its importance to topological quantum field theory and string theory.
In the BRST approach, one selects a perturbation-friendly gauge fixing procedure for the action principle of a gauge theory using the differential geometry of the gauge bundle on which the field theory lives. One then quantizes the theory to obtain a Hamiltonian system in the interaction picture in such a way that the "unphysical" fields introduced by the gauge fixing procedure resolve gauge anomalies without appearing in the asymptotic states of the theory. The result is a set of Feynman rules for use in a Dyson series perturbative expansion of the S-matrix which guarantee that it is unitary and renormalizable at each loop order—in short, a coherent approximation technique for making physical predictions about the results of scattering experiments.
This is related to a supersymplectic manifold where pure operators are graded by integral ghost numbers and we have a BRST cohomology.
From a practical perspective, a quantum field theory consists of an action principle and a set of procedures for performing perturbative calculations. There are other kinds of "sanity checks" that can be performed on a quantum field theory to determine whether it fits qualitative phenomena such as quark confinement and asymptotic freedom. However, most of the predictive successes of quantum field theory, from quantum electrodynamics to the present day, have been quantified by matching S-matrix calculations against the results of scattering experiments.
In the early days of QFT, one would have had to say that the quantization and renormalization prescriptions were as much part of the model as the Lagrangian density, especially when they relied on the powerful but mathematically ill-defined path integral formalism. It quickly became clear that QED was almost "magical" in its relative tractability, and that most of the ways that one might imagine extending it would not produce rational calculations. However, one class of field theories remained promising: gauge theories, in which the objects in the theory represent equivalence classes of physically indistinguishable field configurations, any two of which are related by a gauge transformation. This generalizes the QED idea of a local change of phase to a more complicated Lie group.
QED itself is a gauge theory, as is general relativity, although the latter has proven resistant to quantization so far, for reasons related to renormalization. Another class of gauge theories with a non-Abelian gauge group, beginning with Yang–Mills theory, became amenable to quantization in the late 1960s and early 1970s, largely due to the work of Ludwig D. Faddeev, Victor Popov, Bryce DeWitt, and Gerardus 't Hooft. However, they remained very difficult to work with until the introduction of the BRST method. The BRST method provided the calculation techniques and renormalizability proofs needed to extract accurate results from both "unbroken" Yang–Mills theories and those in which the Higgs mechanism leads to spontaneous symmetry breaking. Representatives of these two types of Yang–Mills systems—quantum chromodynamics and electroweak theory—appear in the Standard Model of particle physics.
It has proven rather more difficult to prove the existence of non-Abelian quantum field theory in a rigorous sense than to obtain accurate predictions using semi-heuristic calculation schemes. This is because analyzing a quantum field theory requires two mathematically interlocked perspectives: a Lagrangian system based on the action functional, composed of fields with distinct values at each point in spacetime and local operators which act on them, and a Hamiltonian system in the Dirac picture, composed of states which characterize the entire system at a given time and field operators which act on them. What makes this so difficult in a gauge theory is that the objects of the theory are not really local fields on spacetime; they are right-invariant local fields on the principal gauge bundle, and different local sections through a portion of the gauge bundle, related by passive transformations, produce different Dirac pictures.
What is more, a description of the system as a whole in terms of a set of fields contains many redundant degrees of freedom; the distinct configurations of the theory are equivalence classes of field configurations, so that two descriptions which are related to one another by a gauge transformation are also really the same physical configuration. The "solutions" of a quantized gauge theory exist not in a straightforward space of fields with values at every point in spacetime but in a quotient space (or cohomology) whose elements are equivalence classes of field configurations. Hiding in the BRST formalism is a system for parameterizing the variations associated with all possible active gauge transformations and correctly accounting for their physical irrelevance during the conversion of a Lagrangian system to a Hamiltonian system.
The principle of gauge invariance is essential to constructing a workable quantum field theory. But it is generally not feasible to perform a perturbative calculation in a gauge theory without first "fixing the gauge"—adding terms to the Lagrangian density of the action principle which "break the gauge symmetry" to suppress these "unphysical" degrees of freedom. The idea of gauge fixing goes back to the Lorenz gauge approach to electromagnetism, which suppresses most of the excess degrees of freedom in the four-potential while retaining manifest Lorentz invariance. The Lorenz gauge is a great simplification relative to Maxwell's field-strength approach to classical electrodynamics, and illustrates why it is useful to deal with excess degrees of freedom in the representation of the objects in a theory at the Lagrangian stage, before passing over to Hamiltonian mechanics via the Legendre transformation.
The Hamiltonian density is related to the Lie derivative of the Lagrangian density with respect to a unit timelike horizontal vector field on the gauge bundle. In a quantum mechanical context it is conventionally rescaled by a factor . Integrating it by parts over a spacelike cross section recovers the form of the integrand familiar from canonical quantization. Because the definition of the Hamiltonian involves a unit time vector field on the base space, a horizontal lift to the bundle space, and a spacelike surface "normal" (in the Minkowski metric) to the unit time vector field at each point on the base manifold, it is dependent both on the connection and the choice of Lorentz frame, and is far from being globally defined. But it is an essential ingredient in the perturbative framework of quantum field theory, into which the quantized Hamiltonian enters via the Dyson series.
For perturbative purposes, we gather the configuration of all the fields of our theory on an entire three-dimensional horizontal spacelike cross section of P into one object (a Fock state), and then describe the "evolution" of this state over time using the interaction picture. The Fock space is spanned by the multi-particle eigenstates of the "unperturbed" or "non-interaction" portion of the Hamiltonian . Hence the instantaneous description of any Fock state is a complex-amplitude-weighted sum of eigenstates of . In the interaction picture, we relate Fock states at different times by prescribing that each eigenstate of the unperturbed Hamiltonian experiences a constant rate of phase rotation proportional to its energy (the corresponding eigenvalue of the unperturbed Hamiltonian).
Hence, in the zero-order approximation, the set of weights characterizing a Fock state does not change over time, but the corresponding field configuration does. In higher approximations, the weights also change; collider experiments in high-energy physics amount to measurements of the rate of change in these weights (or rather integrals of them over distributions representing uncertainty in the initial and final conditions of a scattering event). The Dyson series captures the effect of the discrepancy between and the true Hamiltonian , in the form of a power series in the coupling constant g; it is the principal tool for making quantitative predictions from a quantum field theory.
To use the Dyson series to calculate anything, one needs more than a gauge-invariant Lagrangian density; one also needs the quantization and gauge fixing prescriptions that enter into the Feynman rules of the theory. The Dyson series produces infinite integrals of various kinds when applied to the Hamiltonian of a particular QFT. This is partly because all usable quantum field theories to date must be considered effective field theories, describing only interactions on a certain range of energy scales that we can experimentally probe and therefore vulnerable to ultraviolet divergences. These are tolerable as long as they can be handled via standard techniques of renormalization; they are not so tolerable when they result in an infinite series of infinite renormalizations or, worse, in an obviously unphysical prediction such as an uncancelled gauge anomaly. There is a deep relationship between renormalizability and gauge invariance, which is easily lost in the course of attempts to obtain tractable Feynman rules by fixing the gauge.
The traditional gauge fixing prescriptions of continuum electrodynamics select a unique representative from each gauge-transformation-related equivalence class using a constraint equation such as the Lorenz gauge . This sort of prescription can be applied to an Abelian gauge theory such as QED, although it results in some difficulty in explaining why the Ward identities of the classical theory carry over to the quantum theory—in other words, why Feynman diagrams containing internal longitudinally polarized virtual photons do not contribute to S-matrix calculations. This approach also does not generalize well to non-Abelian gauge groups such as the SU(2)xU(1) of Yang–Mills electroweak theory and the SU(3) of quantum chromodynamics. It suffers from Gribov ambiguities and from the difficulty of defining a gauge fixing constraint that is in some sense "orthogonal" to physically significant changes in the field configuration.
More sophisticated approaches do not attempt to apply a delta function constraint to the gauge transformation degrees of freedom. Instead of "fixing" the gauge to a particular "constraint surface" in configuration space, one can break the gauge freedom with an additional, non-gauge-invariant term added to the Lagrangian density. In order to reproduce the successes of gauge fixing, this term is chosen to be minimal for the choice of gauge that corresponds to the desired constraint and to depend quadratically on the deviation of the gauge from the constraint surface. By the stationary phase approximation on which the Feynman path integral is based, the dominant contribution to perturbative calculations will come from field configurations in the neighborhood of the constraint surface.
The perturbative expansion associated with this Lagrangian, using the method of functional quantization, is generally referred to as the Rξ gauge. It reduces in the case of an Abelian U(1) gauge to the same set of Feynman rules that one obtains in the method of canonical quantization. But there is an important difference: the broken gauge freedom appears in the functional integral as an additional factor in the overall normalization. This factor can only be pulled out of the perturbative expansion (and ignored) when the contribution to the Lagrangian of a perturbation along the gauge degrees of freedom is independent of the particular "physical" field configuration. This is the condition that fails to hold for non-Abelian gauge groups. If one ignores the problem and attempts to use the Feynman rules obtained from "naive" functional quantization, one finds that one's calculations contain unremovable anomalies.
The problem of perturbative calculations in QCD was solved by introducing additional fields known as Faddeev–Popov ghosts, whose contribution to the gauge-fixed Lagrangian offsets the anomaly introduced by the coupling of "physical" and "unphysical" perturbations of the non-Abelian gauge field. From the functional quantization perspective, the "unphysical" perturbations of the field configuration (the gauge transformations) form a subspace of the space of all (infinitesimal) perturbations; in the non-Abelian case, the embedding of this subspace in the larger space depends on the configuration around which the perturbation takes place. The ghost term in the Lagrangian represents the functional determinant of the Jacobian of this embedding, and the properties of the ghost field are dictated by the exponent desired on the determinant in order to correct the functional measure on the remaining "physical" perturbation axes.
Intuition for the BRST formalism is provided by describing it geometrically, in the setting of fiber bundles. This geometric setting contrasts with and illuminates the older traditional picture, that of algebra-valued fields on Minkowski space, provided in (earlier) quantum field theory texts.
In this setting, a gauge field can be understood in one of two different ways. In one, the gauge field is a local section of the fiber bundle. In the other, the gauge field is little more than the connection between adjacent fibers, defined on the entire length of the fiber. Corresponding to these two understandings, there are two ways to look at a gauge transformation. In the first case, a gauge transformation is just a change of local section. In general relativity, this is referred to as a passive transformation. In the second view, a gauge transformation is a change of coordinates along the entire fiber (arising from multiplication by a group element g) which induces a vertical diffeomorphism of the principal bundle.
This second viewpoint provides the geometric foundation for the BRST method. Unlike a passive transformation, it is well-defined globally on a principal bundle, with any structure group over an arbitrary manifold. That is, the BRST formalism can be developed to describe the quantization of any principle bundle on any manifold. For concreteness and relevance to conventional QFT, much of this article sticks to the case of a principal gauge bundle with compact fiber over 4-dimensional Minkowski space.
A principal gauge bundle P over a 4-manifold M is locally isomorphic to U × F, where U ⊂ R4 and the fiber F is isomorphic to a Lie group G, the gauge group of the field theory (this is an isomorphism of manifold structures, not of group structures; there is no special surface in P corresponding to 1 in G, so it is more proper to say that the fiber F is a G-torsor). The most basic property as a fiber bundle is the "projection to the base space" π : P → M, which defines the vertical directions on P (those lying within the fiber π−1(p) over each point p in M). As a gauge bundle it has a left action of G on P which respects the fiber structure, and as a principal bundle it also has a right action of G on P which also respects the fiber structure and commutes with the left action.
The left action of the structure group G on P corresponds to a change of coordinate system on an individual fiber. The (global) right action Rg : P → P for a fixed g in G corresponds to an actual automorphism of each fiber and hence to a map of P to itself. In order for P to qualify as a principal G-bundle, the global right action of each g in G must be an automorphism with respect to the manifold structure of P with a smooth dependence on g, that is, a diffeomorphism P × G → P.
The existence of the global right action of the structure group picks out a special class of right invariant geometric objects on P—those which do not change when they are pulled back along Rg for all values of g in G. The most important right invariant objects on a principal bundle are the right invariant vector fields, which form an ideal of the Lie algebra of infinitesimal diffeomorphisms on P. Those vector fields on P which are both right invariant and vertical form an ideal of , which has a relationship to the entire bundle P analogous to that of the Lie algebra of the gauge group G to the individual G-torsor fiber F.
The "field theory" of interest is defined in terms of a set of "fields" (smooth maps into various vector spaces) defined on a principal gauge bundle P. Different fields carry different representations of the gauge group G, and perhaps of other symmetry groups of the manifold such as the Poincaré group. One may define the space of local polynomials in these fields and their derivatives. The fundamental Lagrangian density of one's theory is presumed to lie in the subspace of polynomials which are real-valued and invariant under any unbroken non-gauge symmetry groups. It is also presumed to be invariant not only under the left action (passive coordinate transformations) and the global right action of the gauge group but also under local gauge transformations—pullback along the infinitesimal diffeomorphism associated with an arbitrary choice of right-invariant vertical vector field .
Identifying local gauge transformations with a particular subspace of vector fields on the manifold P provides a better framework for dealing with infinite-dimensional infinitesimals: differential geometry and the exterior calculus. The change in a scalar field under pullback along an infinitesimal automorphism is captured in the Lie derivative, and the notion of retaining only the term linear in the vector field is implemented by separating it into the interior derivative and the exterior derivative. In this context, "forms" and the exterior calculus refer exclusively to degrees of freedom which are dual to vector fields on the gauge bundle, not to degrees of freedom expressed in (Greek) tensor indices on the base manifold or (Roman) matrix indices on the gauge algebra.
The Lie derivative on a manifold is a globally well-defined operation in a way that the partial derivative is not. The proper generalization of Clairaut's theorem to the non-trivial manifold structure of P is given by the Lie bracket of vector fields and the nilpotence of the exterior derivative. This provides an essential tool for computation: the generalized Stokes theorem, which allows integration by parts and then elimination of the surface term, as long as the integrand drops off rapidly enough in directions where there is an open boundary. (This is not a trivial assumption, but can be dealt with by renormalization techniques such as dimensional regularization as long as the surface term can be made gauge invariant.)
Central to the BRST formalism is the BRST operator, defined as the tangent to the Ward operator . The Ward operator on each field may be identified (up to a sign convention) with the Lie derivative along the vertical vector field associated with the local gauge transformation appearing as a parameter of the Ward operator. The BRST operator on fields resembles the exterior derivative on the gauge bundle, or rather to its restriction to a reduced space of alternating forms which are defined only on vertical vector fields. The Ward and BRST operators are related (up to a phase convention introduced by Kugo and Ojima, whose notation we will follow in the treatment of state vectors below) by . Here, is a zero-form (scalar). The space is the space of real-valued polynomials in the fields and their derivatives that are invariant under any (unbroken) non-gauge symmetry groups.
Like the exterior derivative, the BRST operator is nilpotent of degree 2, i. e., . The variation of any "BRST-exact form" with respect to a local gauge transformation is given by the interior derivative It is
Note that this is also exact.
The Hamiltonian perturbative formalism is carried out not on the fiber bundle, but on a local section. In this formalism, adding a BRST-exact term to a gauge invariant Lagrangian density preserves the relation This implies that there is a related operator on the state space for which That is, the BRST operator on Fock states is a conserved charge of the Hamiltonian system. This implies that the time evolution operator in a Dyson series calculation will not evolve a field configuration obeying into a later configuration with (or vice versa).
The nilpotence of the BRST operator can be understood as saying that its image (the space of BRST exact forms) lies entirely within its kernel (the space of BRST closed forms). The "true" Lagrangian, presumed to be invariant under local gauge transformations, is in the kernel of the BRST operator but not in its image. This implies that the universe of initial and final conditions can be limited to asymptotic "states" or field configurations at timelike infinity, where the interaction Lagrangian is "turned off". These states lie in the kernel of but as the construction is invariant, the scattering matrix remains unitary. BRST-closed and exact states are defined similarly to BRST-closed and exact fields; closed states are annihilated by while exact states are those obtainable by applying to some arbitrary field configuration.
When defining the asymptotic states, the states that lie inside the image of can also be suppressed, but the reasoning is a bit subtler. Having postulated that the "true" Lagrangian of the theory is gauge invariant, the true "states" of the Hamiltonian system are equivalence classes under local gauge transformation; in other words, two initial or final states in the Hamiltonian picture that differ only by a BRST-exact state are physically equivalent. However, the use of a BRST-exact gauge breaking prescription does not guarantee that the interaction Hamiltonian will preserve any particular subspace of closed field configurations that are orthogonal to the space of exact configurations. This is a crucial point, often mishandled in QFT textbooks. There is no a priori inner product on field configurations built into the action principle; such an inner product is constructed as part of the Hamiltonian perturbative apparatus.
The quantization prescription in the interaction picture is to build a vector space of BRST-closed configurations at a particular time, such that this can be converted into a Fock space of intermediate states suitable for Hamiltonian perturbation. As is conventional for second quantization, the Fock space is provided with ladder operators for the energy-momentum eigenconfigurations (particles) of each field, complete with appropriate (anti-)commutation rules, as well as a positive semi-definite inner product. The inner product is required to be singular exclusively along directions that correspond to BRST-exact eigenstates of the unperturbed Hamiltonian. This ensures that any pair of BRST-closed Fock states can be freely chosen out of the two equivalence classes of asymptotic field configurations corresponding to particular initial and final eigenstates of the (unbroken) free-field Hamiltonian.
The desired quantization prescriptions provide a quotient Fock space isomorphic to the BRST cohomology, in which each BRST-closed equivalence class of intermediate states (differing only by an exact state) is represented by exactly one state that contains no quanta of the BRST-exact fields. This is the appropriate Fock space for the asymptotic states of the theory. The singularity of the inner product along BRST-exact degrees of freedom ensures that the physical scattering matrix contains only physical fields. This is in contrast to the (naive, gauge-fixed) Lagrangian dynamics, in which unphysical particles are propagated to the asymptotic states. By working in the cohomology, each asymptotic state is guaranteed to have one (and only one) corresponding physical state (free of ghosts).
The operator is Hermitian and non-zero, yet its square is zero. This implies that the Fock space of all states prior to the cohomological reduction has an indefinite norm, and so is not a Hilbert space. This requires that a Krein space for the BRST-closed intermediate Fock states, with the time reversal operator playing the role of the "fundamental symmetry" relating the Lorentz-invariant and positive semi-definite inner products. The asymptotic state space is then the Hilbert space obtained by quotienting BRST-exact states out of the Krein space.
To summarize: no field introduced as part of a BRST gauge fixing procedure will appear in asymptotic states of the gauge-fixed theory. However, this does not imply that these "unphysical" fields are absent in the intermediate states of a perturbative calculation! This is because perturbative calculations are done in the interaction picture. They implicitly involve initial and final states of the non-interaction Hamiltonian , gradually transformed into states of the full Hamiltonian in accordance with the adiabatic theorem by "turning on" the interaction Hamiltonian (the gauge coupling). The expansion of the Dyson series in terms of Feynman diagrams will include vertices that couple "physical" particles (those that can appear in asymptotic states of the free Hamiltonian) to "unphysical" particles (states of fields that live outside the kernel of or inside the image of ) and vertices that couple "unphysical" particles to one another.
T. Kugo and I. Ojima are commonly credited with the discovery of the principal QCD color confinement criterion. Their role in obtaining a correct version of the BRST formalism in the Lagrangian framework seems to be less widely appreciated. It is enlightening to inspect their variant of the BRST transformation, which emphasizes the hermitian properties of the newly introduced fields, before proceeding from an entirely geometrical angle.
The -valued gauge fixing conditions are taken to be where is a positive number determining the gauge. There are other possible gauge fixings, but are outside of the present scope. The fields appearing in the Lagrangian are:
The field is used to deal with the gauge transformations, wheareas and deal with the gauge fixings. There actually are some subtleties associated with the gauge fixing due to Gribov ambiguities but they will not be covered here.
The BRST Lagrangian density is
Here, is the covariant derivative with respect to the gauge field (connection) The Faddeev–Popov ghost field has a geometrical interpretation as a version of the Maurer–Cartan form on , which relates each right-invariant vertical vector field to its representation (up to a phase) as a -valued field. This field must enter into the formulas for infinitesimal gauge transformations on objects (such as fermions , gauge bosons , and the ghost itself) which carry a non-trivial representation of the gauge group.
While the Lagrangian density isn't BRST invariant, its integral over all of spacetime, the action is. The transformation of the fields under an infinitessimal gauge transformation is given by
Note that is the Lie bracket, NOT the commutator. These may be written in an equivalent form, using the charge operator instead of . The BRST charge operator is defined as
where are the infinitesimal generators of the Lie group, and are its structure constants. Using this, the transformation is given as
The details of the matter sector are unspecified, as is left the form of the Ward operator on it; these are unimportant so long as the representation of the gauge algebra on the matter fields is consistent with their coupling to . The properties of the other fields are fundamentally analytical rather than geometric. The bias is towards connections with is gauge-dependent and has no particular geometrical significance. The anti-ghost is nothing but a Lagrange multiplier for the gauge fixing term, and the properties of the scalar field are entirely dictated by the relationship . These fields are all Hermitian in Kugo–Ojima conventions, but the parameter is an anti-Hermitian "anti-commuting c-number". This results in some unnecessary awkwardness with regard to phases and passing infinitesimal parameters through operators; this can be resolved with a change of conventions.
We already know, from the relation of the BRST operator to the exterior derivative and the Faddeev–Popov ghost to the Maurer–Cartan form, that the ghost corresponds (up to a phase) to a -valued 1-form on . In order for integration of a term like to be meaningful, the anti-ghost must carry representations of these two Lie algebras—the vertical ideal and the gauge algebra —dual to those carried by the ghost. In geometric terms, must be fiberwise dual to and one rank short of being a top form on . Likewise, the auxiliary field must carry the same representation of (up to a phase) as , as well as the representation of dual to its trivial representation on That is, is a fiberwise -dual top form on .
The one-particle states of the theory are discussed in the adiabatically decoupled limit g → 0. There are two kinds of quanta in the Fock space of the gauge-fixed Hamiltonian that lie entirely outside the kernel of the BRST operator: those of the Faddeev–Popov anti-ghost and the forward polarized gauge boson. This is because no combination of fields containing is annihilated by and the Lagrangian has a gauge breaking term that is equal, up to a divergence, to
Likewise, there are two kinds of quanta that will lie entirely in the image of the BRST operator: those of the Faddeev–Popov ghost and the scalar field , which is "eaten" by completing the square in the functional integral to become the backward polarized gauge boson. These are the four types of "unphysical" quanta which do not appear in the asymptotic states of a perturbative calculation.
The anti-ghost is taken to be a Lorentz scalar for the sake of Poincaré invariance in . However, its (anti-)commutation law relative to i.e. its quantization prescription, which ignores the spin–statistics theorem by giving Fermi–Dirac statistics to a spin-0 particle—will be given by the requirement that the inner product on our Fock space of asymptotic states be singular along directions corresponding to the raising and lowering operators of some combination of non-BRST-closed and BRST-exact fields. This last statement is the key to "BRST quantization", as opposed to mere "BRST symmetry" or "BRST transformation".
This section needs expansion. You can help by adding to it. (October 2009) |
This section may be too technical for most readers to understand.(October 2023) |
This section only applies to classical gauge theories. i.e. those that can be described with first class constraints. The more general formalism is described using the Batalin–Vilkovisky formalism.
The BRST construction [1] applies to a situation of a Hamiltonian action of a gauge group on a phase space . Let be the Lie algebra of and a regular value of the moment map . Let . Assume the -action on is free and proper, and consider the space of -orbits on .
The Hamiltonian mechanics of a gauge theory is described by first class constraints acting upon a symplectic space . is the submanifold satisfying the first class constraints. The action of the gauge symmetry partitions into gauge orbits. The symplectic reduction is the quotient of by the gauge orbits.
According to algebraic geometry, the set of smooth functions over a space is a ring. The Koszul-Tate complex (the first class constraints aren't regular in general) describes the algebra associated with the symplectic reduction in terms of the algebra .
First, using equations defining inside , construct a Koszul complex
so that and for .
Then, for the fibration one considers the complex of vertical exterior forms . Locally, is isomorphic to , where is the exterior algebra of the dual of a vector space . Using the Koszul resolution defined earlier, one obtains a bigraded complex
Finally (and this is the most nontrivial step), a differential is defined on which lifts to and such that and
with respect to the grading by the ghost number : .
Thus, the BRST operator or BRST differential accomplishes on the level of functions what symplectic reduction does on the level of manifolds.
There are two antiderivations, and which anticommute with each other. The BRST antiderivation is given by . The operator is nilpotent;
Consider the supercommutative algebra generated by and Grassman odd generators , i.e. the tensor product of a Grassman algebra and . There is a unique antiderivation satisfying and for all . The zeroth homology is given by .
A longitudinal vector field on is a vector field over which is tangent everywhere to the gauge orbits. The Lie bracket of two longitudinal vector fields is itself another longitudinal vector field. Longitudinal -forms are dual to the exterior algebra of -vectors. is essentially the longitudinal exterior derivative defined by
The zeroth cohomology of the longitudinal exterior derivative is the algebra of gauge invariant functions.
The BRST construction applies when one has a Hamiltonian action of a compact, connected Lie group on a phase space . [2] [3] Let be the Lie algebra of (via the Lie group–Lie algebra correspondence) and (the dual of a regular value of the momentum map . Let . Assume the -action on is free and proper, and consider the space of -orbits on , which is also known as a symplectic reduction quotient .
First, using the regular sequence of functions defining inside , construct a Koszul complex
The differential, , on this complex is an odd -linear derivation (differential algebra) of the graded -algebra . This odd derivation is defined by extending the Lie algebra homomorphism of the Hamiltonian action. The resulting Koszul complex is the Koszul complex of the -module , where is the symmetric algebra of , and the module structure comes from a ring homomorphism induced by the Hamiltonian action .
This Koszul complex is a resolution of the -module , that is,
Then, consider the Chevalley–Eilenberg complex for the Koszul complex considered as a differential graded module over the Lie algebra :
The "horizontal" differential is defined on the coefficients
by the action of and on as the exterior derivative of right-invariant differential forms on the Lie group , whose Lie algebra is .
Let Tot(K) be a complex such that
with a differential D = d + δ. The cohomology groups of (Tot(K), D) are computed using a spectral sequence associated to the double complex .
The first term of the spectral sequence computes the cohomology of the "vertical" differential :
The first term of the spectral sequence may be interpreted as the complex of vertical differential forms
for the fiber bundle .
The second term of the spectral sequence computes the cohomology of the "horizontal" differential on :
The spectral sequence collapses at the second term, so that , which is concentrated in degree zero.
Therefore,
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. The current standard model of particle physics is based on quantum field theory.
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.
In gauge theory and mathematical physics, a topological quantum field theory is a quantum field theory which computes topological invariants.
In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. Propagators may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.
In quantum field theory, the mass gap is the difference in energy between the lowest energy state, the vacuum, and the next lowest energy state. The energy of the vacuum is zero by definition, and assuming that all energy states can be thought of as particles in plane-waves, the mass gap is the mass of the lightest particle.
In physics, a sigma model is a field theory that describes the field as a point particle confined to move on a fixed manifold. This manifold can be taken to be any Riemannian manifold, although it is most commonly taken to be either a Lie group or a symmetric space. The model may or may not be quantized. An example of the non-quantized version is the Skyrme model; it cannot be quantized due to non-linearities of power greater than 4. In general, sigma models admit (classical) topological soliton solutions, for example, the skyrmion for the Skyrme model. When the sigma field is coupled to a gauge field, the resulting model is described by Ginzburg–Landau theory. This article is primarily devoted to the classical field theory of the sigma model; the corresponding quantized theory is presented in the article titled "non-linear sigma model".
In quantum field theory, the 't Hooft loop is a magnetic analogue of the Wilson loop for which spatial loops give rise to thin loops of magnetic flux associated with magnetic vortices. They play the role of a disorder parameter for the Higgs phase in pure gauge theory. Consistency conditions between electric and magnetic charges limit the possible 't Hooft loops that can be used, similarly to the way that the Dirac quantization condition limits the set of allowed magnetic monopoles. They were first introduced by Gerard 't Hooft in 1978 in the context of possible phases that gauge theories admit.
In theoretical physics, a source field is a background field coupled to the original field as
In theoretical physics, scalar electrodynamics is a theory of a U(1) gauge field coupled to a charged spin 0 scalar field that takes the place of the Dirac fermions in "ordinary" quantum electrodynamics. The scalar field is charged, and with an appropriate potential, it has the capacity to break the gauge symmetry via the Abelian Higgs mechanism.
In theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation.
In mathematics, the Plancherel theorem for spherical functions is an important result in the representation theory of semisimple Lie groups, due in its final form to Harish-Chandra. It is a natural generalisation in non-commutative harmonic analysis of the Plancherel formula and Fourier inversion formula in the representation theory of the group of real numbers in classical harmonic analysis and has a similarly close interconnection with the theory of differential equations. It is the special case for zonal spherical functions of the general Plancherel theorem for semisimple Lie groups, also proved by Harish-Chandra. The Plancherel theorem gives the eigenfunction expansion of radial functions for the Laplacian operator on the associated symmetric space X; it also gives the direct integral decomposition into irreducible representations of the regular representation on L2(X). In the case of hyperbolic space, these expansions were known from prior results of Mehler, Weyl and Fock.
In quantum field theory, a Ward–Takahashi identity is an identity between correlation functions that follows from the global or gauge symmetries of the theory, and which remains valid after renormalization.
In the ADM formulation of general relativity one splits spacetime into spatial slices and time, the basic variables are taken to be the induced metric, , on the spatial slice, and its conjugate momentum variable related to the extrinsic curvature, ,. These are the metric canonical coordinates.
Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.
In the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extensione is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.
In string theory, the Ramond–Neveu–Schwarz (RNS) formalism is an approach to formulating superstrings in which the worldsheet has explicit superconformal invariance but spacetime supersymmetry is hidden, in contrast to the Green–Schwarz formalism where the latter is explicit. It was originally developed by Pierre Ramond, André Neveu and John Schwarz in the RNS model in 1971, which gives rise to type II string theories and can also give type I string theory. Heterotic string theories can also be acquired through this formalism by using a different worldsheet action. There are various ways to quantize the string within this framework including light-cone quantization, old canonical quantization, and BRST quantization. A consistent string theory is only acquired if the spectrum of states is restricted through a procedure known as a GSO projection, with this projection being automatically present in the Green–Schwarz formalism.
In theoretical physics, the dual graviton is a hypothetical elementary particle that is a dual of the graviton under electric-magnetic duality, as an S-duality, predicted by some formulations of supergravity in eleven dimensions.
Higher-spin theory or higher-spin gravity is a common name for field theories that contain massless fields of spin greater than two. Usually, the spectrum of such theories contains the graviton as a massless spin-two field, which explains the second name. Massless fields are gauge fields and the theories should be (almost) completely fixed by these higher-spin symmetries. Higher-spin theories are supposed to be consistent quantum theories and, for this reason, to give examples of quantum gravity. Most of the interest in the topic is due to the AdS/CFT correspondence where there is a number of conjectures relating higher-spin theories to weakly coupled conformal field theories. It is important to note that only certain parts of these theories are known at present and not many examples have been worked out in detail except some specific toy models.
In theoretical physics, more specifically in quantum field theory and supersymmetry, supersymmetric Yang–Mills, also known as super Yang–Mills and abbreviated to SYM, is a supersymmetric generalization of Yang–Mills theory, which is a gauge theory that plays an important part in the mathematical formulation of forces in particle physics. It is a special case of 4D N = 1 global supersymmetry.
In mathematical physics, the Garnier integrable system, also known as the classical Gaudin model is a classical mechanical system discovered by René Garnier in 1919 by taking the 'Painlevé simplification' or 'autonomous limit' of the Schlesinger equations. It is a classical analogue to the quantum Gaudin model due to Michel Gaudin. The classical Gaudin models are integrable.
Original BRST papers: