Ideal (set theory)

Last updated

In the mathematical field of set theory, an ideal is a partially ordered collection of sets that are considered to be "small" or "negligible". Every subset of an element of the ideal must also be in the ideal (this codifies the idea that an ideal is a notion of smallness), and the union of any two elements of the ideal must also be in the ideal.

Contents

More formally, given a set an ideal on is a nonempty subset of the powerset of such that:

  1. if and then and
  2. if then

Some authors add a fourth condition that itself is not in ; ideals with this extra property are called proper ideals.

Ideals in the set-theoretic sense are exactly ideals in the order-theoretic sense, where the relevant order is set inclusion. Also, they are exactly ideals in the ring-theoretic sense on the Boolean ring formed by the powerset of the underlying set. The dual notion of an ideal is a filter.

Terminology

An element of an ideal is said to be -null or -negligible, or simply null or negligible if the ideal is understood from context. If is an ideal on then a subset of is said to be -positive (or just positive) if it is not an element of The collection of all -positive subsets of is denoted

If is a proper ideal on and for every either or then is a prime ideal.

Examples of ideals

General examples

Ideals on the natural numbers

Ideals on the real numbers

Ideals on other sets

Operations on ideals

Given ideals I and J on underlying sets X and Y respectively, one forms the product on the Cartesian product as follows: For any subset

That is, a set is negligible in the product ideal if only a negligible collection of x-coordinates correspond to a non-negligible slice of A in the y-direction. (Perhaps clearer: A set is positive in the product ideal if positively many x-coordinates correspond to positive slices.)

An ideal I on a set X induces an equivalence relation on the powerset of X, considering A and B to be equivalent (for subsets of X) if and only if the symmetric difference of A and B is an element of I. The quotient of by this equivalence relation is a Boolean algebra, denoted (read "P of X mod I").

To every ideal there is a corresponding filter, called its dual filter. If I is an ideal on X, then the dual filter of I is the collection of all sets where A is an element of I. (Here denotes the relative complement of A in X; that is, the collection of all elements of X that are not in A).

Relationships among ideals

If and are ideals on and respectively, and are Rudin–Keisler isomorphic if they are the same ideal except for renaming of the elements of their underlying sets (ignoring negligible sets). More formally, the requirement is that there be sets and elements of and respectively, and a bijection such that for any subset if and only if the image of under

If and are Rudin–Keisler isomorphic, then and are isomorphic as Boolean algebras. Isomorphisms of quotient Boolean algebras induced by Rudin–Keisler isomorphisms of ideals are called trivial isomorphisms.

See also

Related Research Articles

<span class="mw-page-title-main">Subset</span> Set whose elements all belong to another set

In mathematics, a set A is a subset of a set B if all elements of A are also elements of B; B is then a superset of A. It is possible for A and B to be equal; if they are unequal, then A is a proper subset of B. The relationship of one set being a subset of another is called inclusion. A is a subset of B may also be expressed as B includes A or A is included in B. A k-subset is a subset with k elements.

In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The ordered pair is called a measurable space.

<span class="mw-page-title-main">Ultrafilter</span> Maximal proper filter

In the mathematical field of order theory, an ultrafilter on a given partially ordered set is a certain subset of namely a maximal filter on that is, a proper filter on that cannot be enlarged to a bigger proper filter on

In mathematics, a base (or basis; PL: bases) for the topology τ of a topological space (X, τ) is a family of open subsets of X such that every open set of the topology is equal to the union of some sub-family of . For example, the set of all open intervals in the real number line is a basis for the Euclidean topology on because every open interval is an open set, and also every open subset of can be written as a union of some family of open intervals.

<span class="mw-page-title-main">Symmetric difference</span> Elements in exactly one of two sets

In mathematics, the symmetric difference of two sets, also known as the disjunctive union and set sum, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets and is .

In topology and related branches of mathematics, the Kuratowski closure axioms are a set of axioms that can be used to define a topological structure on a set. They are equivalent to the more commonly used open set definition. They were first formalized by Kazimierz Kuratowski, and the idea was further studied by mathematicians such as Wacław Sierpiński and António Monteiro, among others.

In general topology, a branch of mathematics, a non-empty family A of subsets of a set is said to have the finite intersection property (FIP) if the intersection over any finite subcollection of is non-empty. It has the strong finite intersection property (SFIP) if the intersection over any finite subcollection of is infinite. Sets with the finite intersection property are also called centered systems and filter subbases.

In mathematics, a field of sets is a mathematical structure consisting of a pair consisting of a set and a family of subsets of called an algebra over that contains the empty set as an element, and is closed under the operations of taking complements in finite unions, and finite intersections.

In mathematics, the Fréchet filter, also called the cofinite filter, on a set is a certain collection of subsets of . A subset of belongs to the Fréchet filter if and only if the complement of in is finite. Any such set is said to be cofinite in , which is why it is alternatively called the cofinite filter on .

In topology and related areas of mathematics, the neighbourhood system, complete system of neighbourhoods, or neighbourhood filter for a point in a topological space is the collection of all neighbourhoods of

A Dynkin system, named after Eugene Dynkin, is a collection of subsets of another universal set satisfying a set of axioms weaker than those of 𝜎-algebra. Dynkin systems are sometimes referred to as 𝜆-systems or d-system. These set families have applications in measure theory and probability.

In mathematics, there are two different notions of a ring of sets, both referring to certain families of sets.

In model theory and related areas of mathematics, a type is an object that describes how a element or finite collection of elements in a mathematical structure might behave. More precisely, it is a set of first-order formulas in a language L with free variables x1, x2,…, xn that are true of a set of n-tuples of an L-structure . Depending on the context, types can be complete or partial and they may use a fixed set of constants, A, from the structure . The question of which types represent actual elements of leads to the ideas of saturated models and omitting types.

In mathematics, especially functional analysis, a bornology on a set X is a collection of subsets of X satisfying axioms that generalize the notion of boundedness. One of the key motivations behind bornologies and bornological analysis is the fact that bornological spaces provide a convenient setting for homological algebra in functional analysis. This is becausepg 9 the category of bornological spaces is additive, complete, cocomplete, and has a tensor product adjoint to an internal hom, all necessary components for homological algebra.

In mathematics, a filter on a set is a family of subsets such that:

  1. and
  2. if and , then
  3. If , and , then

In mathematics, a cardinal function is a function that returns cardinal numbers.

In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and

<span class="mw-page-title-main">Filters in topology</span> Use of filters to describe and characterize all basic topological notions and results.

Filters in topology, a subfield of mathematics, can be used to study topological spaces and define all basic topological notions such as convergence, continuity, compactness, and more. Filters, which are special families of subsets of some given set, also provide a common framework for defining various types of limits of functions such as limits from the left/right, to infinity, to a point or a set, and many others. Special types of filters called ultrafilters have many useful technical properties and they may often be used in place of arbitrary filters.

<span class="mw-page-title-main">Ultrafilter on a set</span> Maximal proper filter

In the mathematical field of set theory, an ultrafilter on a set is a maximal filter on the set In other words, it is a collection of subsets of that satisfies the definition of a filter on and that is maximal with respect to inclusion, in the sense that there does not exist a strictly larger collection of subsets of that is also a filter. Equivalently, an ultrafilter on the set can also be characterized as a filter on with the property that for every subset of either or its complement belongs to the ultrafilter.

References