Last updated

In physics, a quantum (plural quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a physical property can be "quantized" is referred to as "the hypothesis of quantization". [1] This means that the magnitude of the physical property can take on only discrete values consisting of integer multiples of one quantum.


For example, a photon is a single quantum of light (or of any other form of electromagnetic radiation). Similarly, the energy of an electron bound within an atom is quantized and can exist only in certain discrete values. (Atoms and matter in general are stable because electrons can exist only at discrete energy levels within an atom.) Quantization is one of the foundations of the much broader physics of quantum mechanics. Quantization of energy and its influence on how energy and matter interact (quantum electrodynamics) is part of the fundamental framework for understanding and describing nature.

Etymology and discovery

The word quantum is the neuter singular of the Latin interrogative adjective quantus, meaning "how much". "Quanta", the neuter plural, short for "quanta of electricity" (electrons), was used in a 1902 article on the photoelectric effect by Philipp Lenard, who credited Hermann von Helmholtz for using the word in the area of electricity. However, the word quantum in general was well known before 1900, [2] e.g. quantum was used in E.A. Poe's Loss of Breath. It was often used by physicians, such as in the term quantum satis . Both Helmholtz and Julius von Mayer were physicians as well as physicists. Helmholtz used quantum with reference to heat in his article [3] on Mayer's work, and the word quantum can be found in the formulation of the first law of thermodynamics by Mayer in his letter [4] dated July 24, 1841.

In 1901, Max Planck used quanta to mean "quanta of matter and electricity", [5] gas, and heat. [6] In 1905, in response to Planck's work and the experimental work of Lenard (who explained his results by using the term quanta of electricity), Albert Einstein suggested that radiation existed in spatially localized packets which he called "quanta of light" ("Lichtquanta"). [7]

The concept of quantization of radiation was discovered in 1900 by Max Planck, who had been trying to understand the emission of radiation from heated objects, known as black-body radiation. By assuming that energy can be absorbed or released only in tiny, differential, discrete packets (which he called "bundles", or "energy elements"), [8] Planck accounted for certain objects changing color when heated. [9] On December 14, 1900, Planck reported his findings to the German Physical Society, and introduced the idea of quantization for the first time as a part of his research on black-body radiation. [10] As a result of his experiments, Planck deduced the numerical value of h, known as the Planck constant, and reported more precise values for the unit of electrical charge and the AvogadroLoschmidt number, the number of real molecules in a mole, to the German Physical Society. After his theory was validated, Planck was awarded the Nobel Prize in Physics for his discovery in 1918.


While quantization was first discovered in electromagnetic radiation, it describes a fundamental aspect of energy not just restricted to photons. [11] In the attempt to bring theory into agreement with experiment, Max Planck postulated that electromagnetic energy is absorbed or emitted in discrete packets, or quanta. [12]

See also

Related Research Articles

Max Planck German theoretical physicist

Max Karl Ernst Ludwig Planck, was a German theoretical physicist whose discovery of energy quanta won him the Nobel Prize in Physics in 1918.

Photon particle nature of light

The photon is a type of elementary particle. It is the quantum of the electromagnetic field including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always move at the speed of light in vacuum, 299792458 m/s. The photon belongs to the class of bosons.

Photoelectric effect Emission of electrons when light hits a material

The photoelectric effect is the emission of electrons when electromagnetic radiation, such as light, hits a material. Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in condensed matter physics, and solid state and quantum chemistry to draw inferences about the properties of atoms, molecules and solids. The effect has found use in electronic devices specialized for light detection and precisely timed electron emission.

Wave–particle duality is the concept in quantum mechanics that every particle or quantum entity may be described as either a particle or a wave. It expresses the inability of the classical concepts "particle" or "wave" to fully describe the behaviour of quantum-scale objects. As Albert Einstein wrote:

It seems as though we must use sometimes the one theory and sometimes the other, while at times we may use either. We are faced with a new kind of difficulty. We have two contradictory pictures of reality; separately neither of them fully explains the phenomena of light, but together they do.

Wilhelm Wien

Wilhelm Carl Werner Otto Fritz Franz Wien was a German physicist who, in 1893, used theories about heat and electromagnetism to deduce Wien's displacement law, which calculates the emission of a blackbody at any temperature from the emission at any one reference temperature.

Planck's law describes the spectral density of electromagnetic radiation emitted by a black body in thermal equilibrium at a given temperature T, when there is no net flow of matter or energy between the body and its environment.

Emission spectrum Frequencies of light emitted by atoms or chemical compounds

The emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted due to an atom or molecule making a transition from a high energy state to a lower energy state. The photon energy of the emitted photon is equal to the energy difference between the two states. There are many possible electron transitions for each atom, and each transition has a specific energy difference. This collection of different transitions, leading to different radiated wavelengths, make up an emission spectrum. Each element's emission spectrum is unique. Therefore, spectroscopy can be used to identify elements in matter of unknown composition. Similarly, the emission spectra of molecules can be used in chemical analysis of substances.

<i>Annalen der Physik</i> Academic journal

Annalen der Physik is one of the oldest scientific journals on physics and has been published since 1799. The journal publishes original, peer-reviewed papers in the areas of experimental, theoretical, applied, and mathematical physics and related areas. The current editor-in-chief is Stefan Hildebrandt. Prior to 2008, its ISO 4 abbreviation was Ann. Phys. (Leipzig), and after 2008 Ann. Phys. (Berl.).

The old quantum theory is a collection of results from the years 1900–1925 which predate modern quantum mechanics. The theory was never complete or self-consistent, but was rather a set of heuristic corrections to classical mechanics. The theory is now understood as the semi-classical approximation to modern quantum mechanics.

Friedrich Hasenöhrl

Friedrich Hasenöhrl, was an Austrian physicist.

The history of special relativity consists of many theoretical results and empirical findings obtained by Albert A. Michelson, Hendrik Lorentz, Henri Poincaré and others. It culminated in the theory of special relativity proposed by Albert Einstein and subsequent work of Max Planck, Hermann Minkowski and others.

<i>Annus Mirabilis</i> papers Papers of Albert Einstein published in the scientific journal Annalen der Physik in 1905

The Annus mirabilis papers are the four papers that Albert Einstein published in Annalen der Physik, a scientific journal, in 1905. These four papers were major contributions to the foundation of modern physics. They revolutionized science's understanding of the fundamental concepts of space, time, mass, and energy. Because Einstein published these remarkable papers in a single year, 1905 is called his annus mirabilis.

A first quantization of a physical system is a possibly semiclassical treatment of quantum mechanics, in which particles or physical objects are treated using quantum wave functions but the surrounding environment is treated classically.

The history of quantum mechanics is a fundamental part of the history of modern physics. Quantum mechanics' history, as it interlaces with the history of quantum chemistry, began essentially with a number of different scientific discoveries: the 1838 discovery of cathode rays by Michael Faraday; the 1859–60 winter statement of the black-body radiation problem by Gustav Kirchhoff; the 1877 suggestion by Ludwig Boltzmann that the energy states of a physical system could be discrete; the discovery of the photoelectric effect by Heinrich Hertz in 1887; and the 1900 quantum hypothesis by Max Planck that any energy-radiating atomic system can theoretically be divided into a number of discrete "energy elements" ε such that each of these energy elements is proportional to the frequency ν with which each of them individually radiate energy, as defined by the following formula:

Alfred Bucherer German physicist

Alfred Heinrich Bucherer was a German physicist, who is known for his experiments on relativistic mass. He also was the first who used the phrase "theory of relativity" for Einstein's theory of special relativity.

Planck constant Physical constant in quantum mechanics

The Planck constant, or Planck's constant, is a fundamental physical constant denoted , and is of fundamental importance in quantum mechanics. A photon's energy is equal to its frequency multiplied by the Planck constant. Due to mass–energy equivalence, the Planck constant also relates mass to frequency.

Branches of physics

Physics is a scientific discipline that seeks to construct and experimentally test theories of the physical universe. These theories vary in their scope and can be organized into several distinct branches, which are outlined in this article.

In 1922, American physicist William Duane presented a discrete momentum-exchange model of the reflection of X-Ray photons by a crystal lattice. Duane showed that such a model gives the same scattering angles as the ones calculated via a wave diffraction model, see Bragg's Law.

Jun Ishiwara or Atsushi Ishihara was a Japanese theoretical physicist, known for his works on the electronic theory of metals, the theory of relativity and quantum theory. Being the only Japanese scientist who made an original contribution to the old quantum theory, in 1915, independently of other scientists, he formulated quantization rules for systems with several degrees of freedom.

Father of quantum mechanics is a moniker applied to several individuals. Strictly speaking, Max Planck, Werner Heisenberg, and Erwin Schrödinger have equal claim and recognition. Max Planck unwittingly originated the vast field of quantum theory with his famous Planck Equation and is regarded as the 'true but reluctant father' of the modern concept of 'quantum of energy' that underlies all quantum phenomena. However, according to acclaimed science historian Thomas Kuhn, head of applied physics Douglas A. Stone, cognitive scientist Douglas Hofstadter and many others, including Planck himself, it was Albert Einstein who quantized the radiation field by arguing that light itself was quantized - as opposed to Planck's much more ambiguous argument that quantization only occurred at the sites of emission and absorption. Kuhn, Stone and Hofstadter all argue that it was Einstein, not Planck, who quantized the radiation field. For this reason, and his many other seminal contributions to quantum theory, Einstein is regarded by many science historians as the father of quantum theory.


  1. Wiener, N. (1966). Differential Space, Quantum Systems, and Prediction. Cambridge: The Massachusetts Institute of Technology Press
  2. E. Cobham Brewer 1810–1897. Dictionary of Phrase and Fable. 1898.
  3. E. Helmholtz, Robert Mayer's Priorität Archived 2015-09-29 at the Wayback Machine (in German)
  4. Herrmann, Armin (1991). "Heimatseite von Robert J. Mayer" (in German). Weltreich der Physik, GNT-Verlag. Archived from the original on 1998-02-09.CS1 maint: bot: original URL status unknown (link)
  5. Planck, M. (1901). "Ueber die Elementarquanta der Materie und der Elektricität" (PDF). Annalen der Physik (in German). 309 (3): 564–566. Bibcode:1901AnP...309..564P. doi:10.1002/andp.19013090311.
  6. Planck, Max (1883). "Ueber das thermodynamische Gleichgewicht von Gasgemengen". Annalen der Physik (in German). 255 (6): 358–378. Bibcode:1883AnP...255..358P. doi:10.1002/andp.18832550612.
  7. Einstein, A. (1905). "Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt" (PDF). Annalen der Physik (in German). 17 (6): 132–148. Bibcode:1905AnP...322..132E. doi: 10.1002/andp.19053220607 .. A partial English translation is available from Wikisource.
  8. Max Planck (1901). "Ueber das Gesetz der Energieverteilung im Normalspectrum (On the Law of Distribution of Energy in the Normal Spectrum)". Annalen der Physik. 309 (3): 553. Bibcode:1901AnP...309..553P. doi: 10.1002/andp.19013090310 . Archived from the original on 2008-04-18.
  9. Brown, T., LeMay, H., Bursten, B. (2008). Chemistry: The Central Science Upper Saddle River, NJ: Pearson Education ISBN   0-13-600617-5
  10. Klein, Martin J. (1961). "Max Planck and the beginnings of the quantum theory". Archive for History of Exact Sciences. 1 (5): 459–479. doi:10.1007/BF00327765.
  11. Melville, K. (2005, February 11). Real-World Quantum Effects Demonstrated
  12. Modern Applied Physics-Tippens third edition; McGraw-Hill.

Further reading