In mathematics, an element of a ring is called nilpotent if there exists some positive integer , called the index (or sometimes the degree), such that .
The term, along with its sister idempotent, was introduced by Benjamin Peirce in the context of his work on the classification of algebras. [1]
No nilpotent element can be a unit (except in the trivial ring, which has only a single element 0 = 1). All nilpotent elements are zero divisors.
An matrix with entries from a field is nilpotent if and only if its characteristic polynomial is .
If is nilpotent, then is a unit, because entails
More generally, the sum of a unit element and a nilpotent element is a unit when they commute.
The nilpotent elements from a commutative ring form an ideal ; this is a consequence of the binomial theorem. This ideal is the nilradical of the ring. Every nilpotent element in a commutative ring is contained in every prime ideal of that ring, since . So is contained in the intersection of all prime ideals.
If is not nilpotent, we are able to localize with respect to the powers of : to get a non-zero ring . The prime ideals of the localized ring correspond exactly to those prime ideals of with . [2] As every non-zero commutative ring has a maximal ideal, which is prime, every non-nilpotent is not contained in some prime ideal. Thus is exactly the intersection of all prime ideals. [3]
A characteristic similar to that of Jacobson radical and annihilation of simple modules is available for nilradical: nilpotent elements of ring are precisely those that annihilate all integral domains internal to the ring (that is, of the form for prime ideals ). This follows from the fact that nilradical is the intersection of all prime ideals.
Let be a Lie algebra. Then an element is called nilpotent if it is in and is a nilpotent transformation. See also: Jordan decomposition in a Lie algebra.
Any ladder operator in a finite dimensional space is nilpotent. They represent creation and annihilation operators, which transform from one state to another, for example the raising and lowering Pauli matrices .
An operand that satisfies is nilpotent. Grassmann numbers which allow a path integral representation for Fermionic fields are nilpotents since their squares vanish. The BRST charge is an important example in physics.
As linear operators form an associative algebra and thus a ring, this is a special case of the initial definition. [4] [5] More generally, in view of the above definitions, an operator is nilpotent if there is such that (the zero function). Thus, a linear map is nilpotent iff it has a nilpotent matrix in some basis. Another example for this is the exterior derivative (again with ). Both are linked, also through supersymmetry and Morse theory, [6] as shown by Edward Witten in a celebrated article. [7]
The electromagnetic field of a plane wave without sources is nilpotent when it is expressed in terms of the algebra of physical space. [8] More generally, the technique of microadditivity (which can used to derive theorems in physics) makes use of nilpotent or nilsquare infinitesimals and is part smooth infinitesimal analysis.
The two-dimensional dual numbers contain a nilpotent space. Other algebras and numbers that contain nilpotent spaces include split-quaternions (coquaternions), split-octonions, biquaternions , and complex octonions . If a nilpotent infinitesimal is a variable tending to zero, it can be shown that any sum of terms for which it is the subject is an indefinitely small proportion of the first order term.
In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.
In mathematics, a Lie algebra is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. In other words, a Lie algebra is an algebra over a field for which the multiplication operation is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors and is denoted . A Lie algebra is typically a non-associative algebra. However, every associative algebra gives rise to a Lie algebra, consisting of the same vector space with the commutator Lie bracket, .
In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with the zero ideal.
In mathematics, and more specifically in ring theory, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group.
In algebra, the dual numbers are a hypercomplex number system first introduced in the 19th century. They are expressions of the form a + bε, where a and b are real numbers, and ε is a symbol taken to satisfy with .
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.
In abstract algebra, an element a of a ring R is called a left zero divisor if there exists a nonzero x in R such that ax = 0, or equivalently if the map from R to R that sends x to ax is not injective. Similarly, an element a of a ring is called a right zero divisor if there exists a nonzero y in R such that ya = 0. This is a partial case of divisibility in rings. An element that is a left or a right zero divisor is simply called a zero divisor. An element a that is both a left and a right zero divisor is called a two-sided zero divisor. If the ring is commutative, then the left and right zero divisors are the same.
In commutative algebra, the Krull dimension of a commutative ring R, named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules.
In mathematics, more specifically ring theory, the Jacobson radical of a ring R is the ideal consisting of those elements in R that annihilate all simple right R-modules. It happens that substituting "left" in place of "right" in the definition yields the same ideal, and so the notion is left–right symmetric. The Jacobson radical of a ring is frequently denoted by J(R) or rad(R); the former notation will be preferred in this article, because it avoids confusion with other radicals of a ring. The Jacobson radical is named after Nathan Jacobson, who was the first to study it for arbitrary rings in Jacobson 1945.
In mathematics, more specifically in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on algebraic varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies commutative local rings and their modules.
In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings, as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.
In ring theory, a branch of mathematics, the radical of an ideal of a commutative ring is another ideal defined by the property that an element is in the radical if and only if some power of is in . Taking the radical of an ideal is called radicalization. A radical ideal is an ideal that is equal to its radical. The radical of a primary ideal is a prime ideal.
In algebra, the nilradical of a commutative ring is the ideal consisting of the nilpotent elements:
In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.
In mathematics, the Heisenberg group, named after Werner Heisenberg, is the group of 3×3 upper triangular matrices of the form
In ring theory, a branch of mathematics, a ring is called a reduced ring if it has no non-zero nilpotent elements. Equivalently, a ring is reduced if it has no non-zero elements with square zero, that is, x2 = 0 implies x = 0. A commutative algebra over a commutative ring is called a reduced algebra if its underlying ring is reduced.
In abstract algebra, a valuation ring is an integral domain D such that for every non-zero element x of its field of fractions F, at least one of x or x−1 belongs to D.
In abstract algebra, the split-quaternions or coquaternions form an algebraic structure introduced by James Cockle in 1849 under the latter name. They form an associative algebra of dimension four over the real numbers.
In mathematics, a unipotent elementr of a ring R is one such that r − 1 is a nilpotent element; in other words, (r − 1)n is zero for some n.
In commutative algebra, an element b of a commutative ring B is said to be integral over a subring A of B if b is a root of some monic polynomial over A.