Nilpotent algebra

Last updated

In mathematics, specifically in ring theory, a nilpotent algebra over a commutative ring is an algebra over a commutative ring, in which for some positive integer n every product containing at least n elements of the algebra is zero. The concept of a nilpotent Lie algebra has a different definition, which depends upon the Lie bracket. (There is no Lie bracket for many algebras over commutative rings; a Lie algebra involves its Lie bracket, whereas, there is no Lie bracket defined in the general case of an algebra over a commutative ring.) Another possible source of confusion in terminology is the quantum nilpotent algebra, [1] a concept related to quantum groups and Hopf algebras.

Contents

Formal definition

An associative algebra over a commutative ring is defined to be a nilpotent algebra if and only if there exists some positive integer such that for all in the algebra . The smallest such is called the index of the algebra . [2] In the case of a non-associative algebra, the definition is that every different multiplicative association of the elements is zero.

Nil algebra

A power associative algebra in which every element of the algebra is nilpotent is called a nil algebra. [3]

Nilpotent algebras are trivially nil, whereas nil algebras may not be nilpotent, as each element being nilpotent does not force products of distinct elements to vanish.

See also

Related Research Articles

Integral domain Commutative ring with no zero divisors other than zero

In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.

Lie algebra vector space with an alternating binary operation satisfying the Jacobi identity.

In mathematics, a Lie algebra is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. The vector space together with this operation is a non-associative algebra, meaning that the Lie bracket is not necessarily associative.

Prime ideal ideal such that, whenever a product belongs to it, at least one of its factors also belong to it

In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with the zero ideal.

Ideal (ring theory) additive subgroup of a ring closed under multiplcation by arbitrary ring element

In ring theory, a branch of abstract algebra, an ideal is a special subset of a ring. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any other integer results in another even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring similarly to the way that, in group theory, a normal subgroup can be used to construct a quotient group.

Ring (mathematics) Algebraic structure with addition and multiplication

In mathematics, a ring is one of the fundamental algebraic structures used in abstract algebra. It consists of a set equipped with two binary operations that generalize the arithmetic operations of addition and multiplication. Through this generalization, theorems from arithmetic are extended to non-numerical objects such as polynomials, series, matrices and functions.

In abstract algebra, an element a of a ring R is called a left zero divisor if there exists a nonzero x such that ax = 0, or equivalently if the map from R to R that sends x to ax is not injective. Similarly, an element a of a ring is called a right zero divisor if there exists a nonzero y such that ya = 0. This is a partial case of divisibility in rings. An element that is a left or a right zero divisor is simply called a zero divisor. An element a that is both a left and a right zero divisor is called a two-sided zero divisor. If the ring is commutative, then the left and right zero divisors are the same.

In commutative algebra, the Krull dimension of a commutative ring R, named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules.

In mathematics, more specifically ring theory, the Jacobson radical of a ring R is the ideal consisting of those elements in R that annihilate all simple right R-modules. It happens that substituting "left" in place of "right" in the definition yields the same ideal, and so the notion is left-right symmetric. The Jacobson radical of a ring is frequently denoted by J(R) or rad(R); the former notation will be preferred in this article, because it avoids confusion with other radicals of a ring. The Jacobson radical is named after Nathan Jacobson, who was the first to study it for arbitrary rings in.

Commutative ring Algebraic structure

In ring theory, a branch of abstract algebra, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of noncommutative rings where multiplication is not required to be commutative.

Quotient ring

In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient groups of group theory and the quotient spaces of linear algebra. It is a specific example of a quotient, as viewed from the general setting of universal algebra. One starts with a ring R and a two-sided ideal I in R, and constructs a new ring, the quotient ring R / I, whose elements are the cosets of I in R subject to special + and operations.

In mathematics, an algebra over a field is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear".

Ring theory Branch of algebra

In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings, as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.

Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject.

In mathematics, an element x of a ring R is called nilpotent if there exists some positive integer n, called the index, such that xn = 0.

In ring theory, a branch of mathematics, a radical of a ring is an ideal of "not-good" elements of the ring.

In mathematics, a formal group law is a formal power series behaving as if it were the product of a Lie group. They were introduced by S. Bochner (1946). The term formal group sometimes means the same as formal group law, and sometimes means one of several generalizations. Formal groups are intermediate between Lie groups and Lie algebras. They are used in algebraic number theory and algebraic topology.

In mathematics, and more specifically in algebra, a domain is a nonzero ring in which ab = 0 implies a = 0 or b = 0. Equivalently, a domain is a ring in which 0 is the only left zero divisor. A commutative domain is called an integral domain. Mathematical literature contains multiple variants of the definition of "domain".

In ring theory, a ring R is called a reduced ring if it has no non-zero nilpotent elements. Equivalently, a ring is reduced if it has no non-zero elements with square zero, that is, x2 = 0 implies x = 0. A commutative algebra over a commutative ring is called a reduced algebra if its underlying ring is reduced.

Non-associative algebra algebra over a field

A non-associative algebra is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × AA which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation. Since it is not assumed that the multiplication is associative, using parentheses to indicate the order of multiplications is necessary. For example, the expressions (ab)(cd), d and a(b ) may all yield different answers.

Semiprime ring

In ring theory, a branch of mathematics, semiprime ideals and semiprime rings are generalizations of prime ideals and prime rings. In commutative algebra, semiprime ideals are also called radical ideals.

References

  1. Goodearl, K. R.; Yakimov, M. T. (1 Nov 2013). "Unipotent and Nakayama automorphisms of quantum nilpotent algebras". arXiv: 1311.0278 .
  2. Albert, A. Adrian (2003) [1939]. "Chapt. 2: Ideals and Nilpotent Algebras". Structure of Algebras. Colloquium Publications, Col. 24. Amer. Math. Soc. p. 22. ISBN   0-8218-1024-3. ISSN   0065-9258; reprint with corrections of revised 1961 edition
  3. Nil algebra – Encyclopedia of Mathematics