Grassmann number

Last updated

In mathematical physics, a Grassmann number, named after Hermann Grassmann (also called an anticommuting number or supernumber), is an element of the exterior algebra over the complex numbers. [1] The special case of a 1-dimensional algebra is known as a dual number. Grassmann numbers saw an early use in physics to express a path integral representation for fermionic fields, although they are now widely used as a foundation for superspace, on which supersymmetry is constructed.

Contents

Informal discussion

Grassmann numbers are generated by anti-commuting elements or objects. The idea of anti-commuting objects arises in multiple areas of mathematics: they are typically seen in differential geometry, where the differential forms are anti-commuting. Differential forms are normally defined in terms of derivatives on a manifold; however, one can contemplate the situation where one "forgets" or "ignores" the existence of any underlying manifold, and "forgets" or "ignores" that the forms were defined as derivatives, and instead, simply contemplate a situation where one has objects that anti-commute, and have no other pre-defined or presupposed properties. Such objects form an algebra, and specifically the Grassmann algebra or exterior algebra.

The Grassmann numbers are elements of that algebra. The appellation of "number" is justified by the fact that they behave not unlike "ordinary" numbers: they can be added, multiplied and divided: they behave almost like a field. More can be done: one can consider polynomials of Grassmann numbers, leading to the idea of holomorphic functions. One can take derivatives of such functions, and then consider the anti-derivatives as well. Each of these ideas can be carefully defined, and correspond reasonably well to the equivalent concepts from ordinary mathematics. The analogy does not stop there: one has an entire branch of supermathematics, where the analog of Euclidean space is superspace, the analog of a manifold is a supermanifold, the analog of a Lie algebra is a Lie superalgebra and so on. The Grassmann numbers are the underlying construct that make this all possible.

Of course, one could pursue a similar program for any other field, or even ring, and this is indeed widely and commonly done in mathematics. However, supermathematics takes on a special significance in physics, because the anti-commuting behavior can be strongly identified with the quantum-mechanical behavior of fermions: the anti-commutation is that of the Pauli exclusion principle. Thus, the study of Grassmann numbers, and of supermathematics, in general, is strongly driven by their utility in physics.

Specifically, in quantum field theory, or more narrowly, second quantization, one works with ladder operators that create multi-particle quantum states. The ladder operators for fermions create field quanta that must necessarily have anti-symmetric wave functions, as this is forced by the Pauli exclusion principle. In this situation, a Grassmann number corresponds immediately and directly to a wave function that contains some (typically indeterminate) number of fermions.

When the number of fermions is fixed and finite, an explicit relationship between anticommutation relations and spinors is given by means of the spin group. This group can be defined as the subset of unit-length vectors in the Clifford algebra, and naturally factorizes into anti-commuting Weyl spinors. Both the anti-commutation and the expression as spinors arises in a natural fashion for the spin group. In essence, the Grassmann numbers can be thought of as discarding the relationships arising from spin, and keeping only the relationships due to anti-commutation.

General description and properties

Grassmann numbers are individual elements or points of the exterior algebra generated by a set of nGrassmann variables or Grassmann directions or supercharges , with n possibly being infinite. The usage of the term "Grassmann variables" is historic; they are not variables, per se; they are better understood as the basis elements of a unital algebra. The terminology comes from the fact that a primary use is to define integrals, and that the variable of integration is Grassmann-valued, and thus, by abuse of language, is called a Grassmann variable. Similarly, the notion of direction comes from the notion of superspace, where ordinary Euclidean space is extended with additional Grassmann-valued "directions". The appellation of charge comes from the notion of charges in physics, which correspond to the generators of physical symmetries (via Noether's theorem). The perceived symmetry is that multiplication by a single Grassmann variable swaps the grading between fermions and bosons; this is discussed in greater detail below.

The Grassmann variables are the basis vectors of a vector space (of dimension n). They form an algebra over a field, with the field usually being taken to be the complex numbers, although one could contemplate other fields, such as the reals. The algebra is a unital algebra, and the generators are anti-commuting:

Since the are elements of a vector space over the complex numbers, they, by definition, commute with complex numbers. That is, for complex x, one has

The squares of the generators vanish:

since

In other words, a Grassmann variable is a non-zero square-root of zero.

Formal definition

Formally, let V be an n-dimensional complex vector space with basis . The Grassmann algebra whose Grassmann variables are is defined to be the exterior algebra of V, namely

where is the exterior product and is the direct sum. The individual elements of this algebra are then called Grassmann numbers. It is standard to omit the wedge symbol when writing a Grassmann number once the definition is established. A general Grassmann number can be written as

where are strictly increasing k-tuples with , and the are complex, completely antisymmetric tensors of rank k. Again, the , and the (subject to ), and larger finite products, can be seen here to be playing the role of a basis vectors of subspaces of .

The Grassmann algebra generated by n linearly independent Grassmann variables has dimension 2n; this follows from the binomial theorem applied to the above sum, and the fact that the (n + 1)-fold product of variables must vanish, by the anti-commutation relations, above. The dimension of is given by n choose k, the binomial coefficient. The special case of n = 1 is called a dual number, and was introduced by William Clifford in 1873.

In case V is infinite-dimensional, the above series does not terminate and one defines

The general element is now

where is sometimes referred to as the body and as the soul of the supernumber.

Properties

In the finite-dimensional case (using the same terminology) the soul is nilpotent, i.e.

but this is not necessarily so in the infinite-dimensional case. [2]

If V is finite-dimensional, then

and if V is infinite-dimensional [3]

Finite vs. countable sets of generators

Two distinct kinds of supernumbers commonly appear in the literature: those with a finite number of generators, typically n = 1, 2, 3 or 4, and those with a countably-infinite number of generators. These two situations are not as unrelated as they may seem at first. First, in the definition of a supermanifold, one variant uses a countably-infinite number of generators, but then employs a topology that effectively reduces the dimension to a small finite number. [4] [5]

In the other case, one may start with a finite number of generators, but in the course of second quantization, a need for an infinite number of generators arises: one each for every possible momentum that a fermion might carry.

Involution, choice of field

The complex numbers are usually chosen as the field for the definition of the Grassmann numbers, as opposed to the real numbers, as this avoids some strange behaviors when a conjugation or involution is introduced. It is common to introduce an operator * on the Grassmann numbers such that:

when is a generator, and such that

One may then consider Grassmann numbers z for which , and term these (super) real, while those that obey are termed (super) imaginary. These definitions carry through just fine, even if the Grassmann numbers use the real numbers as the base field; however, in such a case, many coefficients are forced to vanish if the number of generators is less than 4. Thus, by convention, the Grassmann numbers are usually defined over the complex numbers.

Other conventions are possible; the above is sometimes referred to as the DeWitt convention; Rogers employs for the involution. In this convention, the real supernumbers always have real coefficients; whereas in the DeWitt convention, the real supernumbers may have both real and imaginary coefficients. Despite this, it is usually easiest to work with the DeWitt convention.

Analysis

Products of an odd number of Grassmann variables anti-commute with each other; such a product is often called an a-number. Products of an even number of Grassmann variables commute (with all Grassman numbers); they are often called c-number s. By abuse of terminology, an a-number is sometimes called an anticommuting c-number. This decomposition into even and odd subspaces provides a grading on the algebra; thus Grassmann algebras are the prototypical examples of supercommutative algebras. Note that the c-numbers form a subalgebra of , but the a-numbers do not (they are a subspace, not a subalgebra).

The definition of Grassmann numbers allows mathematical analysis to be performed, in analogy to analysis on complex numbers. That is, one may define superholomorphic functions, define derivatives, as well as defining integrals. Some of the basic concepts are developed in greater detail in the article on dual numbers.

As a general rule, it is usually easier to define the super-symmetric analogs of ordinary mathematical entities by working with Grassmann numbers with an infinite number of generators: most definitions become straightforward, and can be taken over from the corresponding bosonic definitions. For example, a single Grassmann number can be thought of as generating a one-dimensional space. A vector space, the m-dimensional superspace, then appears as the m-fold Cartesian product of these one-dimensional [ clarification needed ] It can be shown that this is essentially equivalent to an algebra with m generators, but this requires work. [6] [ clarification needed ]

Spinor space

The spinor space is defined as the Grassmann or exterior algebra of the space of Weyl spinors (and anti-spinors ), such that the wave functions of n fermions belong in .

Integration

Integrals over Grassmann numbers are known as Berezin integrals (sometimes called Grassmann integrals). In order to reproduce the path integral for a Fermi field, the definition of Grassmann integration needs to have the following properties:

Moreover, the Taylor expansion of any function terminates after two terms because , and quantum field theory additionally require invariance under the shift of integration variables such that

The only linear function satisfying this condition is a constant (conventionally 1) times B, so Berezin defined [7]

This results in the following rules for the integration of a Grassmann quantity:

Thus we conclude that the operations of integration and differentiation of a Grassmann number are identical.

In the path integral formulation of quantum field theory the following Gaussian integral of Grassmann quantities is needed for fermionic anticommuting fields, with A being an N × N matrix:

.

Conventions and complex integration

An ambiguity arises when integrating over multiple Grassmann numbers. The convention that performs the innermost integral first yields

Some authors also define complex conjugation similar to Hermitian conjugation of operators, [8]

With the additional convention

we can treat θ and θ* as independent Grassmann numbers, and adopt

Thus a Gaussian integral evaluates to

and an extra factor of θθ* effectively introduces a factor of (1/b), just like an ordinary Gaussian,

After proving unitarity, we can evaluate a general Gaussian integral involving a Hermitian matrix B with eigenvalues bi, [8] [9]

Matrix representations

Grassmann numbers can be represented by matrices. Consider, for example, the Grassmann algebra generated by two Grassmann numbers and . These Grassmann numbers can be represented by 4×4 matrices:

In general, a Grassmann algebra on n generators can be represented by 2n× 2n square matrices. Physically, these matrices can be thought of as raising operators acting on a Hilbert space of n identical fermions in the occupation number basis. Since the occupation number for each fermion is 0 or 1, there are 2n possible basis states. Mathematically, these matrices can be interpreted as the linear operators corresponding to left exterior multiplication on the Grassmann algebra itself.

Generalisations

There are some generalisations to Grassmann numbers. These require rules in terms of N variables such that:

where the indices are summed over all permutations so that as a consequence:

for some N > 2. These are useful for calculating hyperdeterminants of N-tensors where N > 2 and also for calculating discriminants of polynomials for powers larger than 2. There is also the limiting case as N tends to infinity in which case one can define analytic functions on the numbers. For example, in the case with N = 3 a single Grassmann number can be represented by the matrix:

so that . For two Grassmann numbers the matrix would be of size 10×10.

For example, the rules for N = 3 with two Grassmann variables imply:

so that it can be shown that

and so

which gives a definition for the hyperdeterminant of a 2×2×2 tensor as

See also

Notes

  1. DeWitt 1984 , Chapter 1, page 1.
  2. DeWitt 1984 , pp. 1–2.
  3. DeWitt 1984 , p. 2.
  4. Rogers 2007a , Chapter 1 (available online)
  5. Rogers 2007 , Chapter 1 and Chapter 8.
  6. Rogers 2007
  7. Berezin, F. A. (1966). The Method of Second Quantization. Pure and Applied Physics. Vol. 24. New York. ISSN   0079-8193.{{cite book}}: CS1 maint: location missing publisher (link)
  8. 1 2 Peskin, Michael E.; Schroeder, Daniel V. (1995). An introduction to quantum field theory (5. (corrected) printing. ed.). Reading, Mass.: Addison-Wesley. ISBN   9780201503975.
  9. Indices' typo present in source.

Related Research Articles

<span class="mw-page-title-main">Feynman diagram</span> Pictorial representation of the behavior of subatomic particles

In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduced the diagrams in 1948. The interaction of subatomic particles can be complex and difficult to understand; Feynman diagrams give a simple visualization of what would otherwise be an arcane and abstract formula. According to David Kaiser, "Since the middle of the 20th century, theoretical physicists have increasingly turned to this tool to help them undertake critical calculations. Feynman diagrams have revolutionized nearly every aspect of theoretical physics." While the diagrams are applied primarily to quantum field theory, they can also be used in other areas of physics, such as solid-state theory. Frank Wilczek wrote that the calculations that won him the 2004 Nobel Prize in Physics "would have been literally unthinkable without Feynman diagrams, as would [Wilczek's] calculations that established a route to production and observation of the Higgs particle."

<span class="mw-page-title-main">Lorentz transformation</span> Family of linear transformations

In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.

<span class="mw-page-title-main">Lorentz group</span> Lie group of Lorentz transformations

In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz.

<span class="mw-page-title-main">Jensen's inequality</span> Theorem of convex functions

In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function. It was proved by Jensen in 1906, building on an earlier proof of the same inequality for doubly-differentiable functions by Otto Hölder in 1889. Given its generality, the inequality appears in many forms depending on the context, some of which are presented below. In its simplest form the inequality states that the convex transformation of a mean is less than or equal to the mean applied after convex transformation; it is a simple corollary that the opposite is true of concave transformations.

In probability and statistics, an exponential family is a parametric set of probability distributions of a certain form, specified below. This special form is chosen for mathematical convenience, including the enabling of the user to calculate expectations, covariances using differentiation based on some useful algebraic properties, as well as for generality, as exponential families are in a sense very natural sets of distributions to consider. The term exponential class is sometimes used in place of "exponential family", or the older term Koopman–Darmois family. Sometimes loosely referred to as "the" exponential family, this class of distributions is distinct because they all possess a variety of desirable properties, most importantly the existence of a sufficient statistic.

In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function. It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group.

In mathematics, in particular in algebraic topology and differential geometry, the Stiefel–Whitney classes are a set of topological invariants of a real vector bundle that describe the obstructions to constructing everywhere independent sets of sections of the vector bundle. Stiefel–Whitney classes are indexed from 0 to n, where n is the rank of the vector bundle. If the Stiefel–Whitney class of index i is nonzero, then there cannot exist everywhere linearly independent sections of the vector bundle. A nonzero nth Stiefel–Whitney class indicates that every section of the bundle must vanish at some point. A nonzero first Stiefel–Whitney class indicates that the vector bundle is not orientable. For example, the first Stiefel–Whitney class of the Möbius strip, as a line bundle over the circle, is not zero, whereas the first Stiefel–Whitney class of the trivial line bundle over the circle, , is zero.

<span class="mw-page-title-main">Generalized inverse Gaussian distribution</span> Family of continuous probability distributions

In probability theory and statistics, the generalized inverse Gaussian distribution (GIG) is a three-parameter family of continuous probability distributions with probability density function

In theoretical physics, the Wess–Zumino model has become the first known example of an interacting four-dimensional quantum field theory with linearly realised supersymmetry. In 1974, Julius Wess and Bruno Zumino studied, using modern terminology, dynamics of a single chiral superfield whose cubic superpotential leads to a renormalizable theory. It is a special case of 4D N = 1 global supersymmetry.

<span class="mw-page-title-main">Directivity</span> Measure of how much of an antennas signal is transmitted in one direction

In electromagnetics, directivity is a parameter of an antenna or optical system which measures the degree to which the radiation emitted is concentrated in a single direction. It is the ratio of the radiation intensity in a given direction from the antenna to the radiation intensity averaged over all directions. Therefore, the directivity of a hypothetical isotropic radiator is 1, or 0 dBi.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

In mathematical physics, the Berezin integral, named after Felix Berezin,, is a way to define integration for functions of Grassmann variables. It is not an integral in the Lebesgue sense; the word "integral" is used because the Berezin integral has properties analogous to the Lebesgue integral and because it extends the path integral in physics, where it is used as a sum over histories for fermions.

Common integrals in quantum field theory are all variations and generalizations of Gaussian integrals to the complex plane and to multiple dimensions. Other integrals can be approximated by versions of the Gaussian integral. Fourier integrals are also considered.

In mathematical physics, the Belinfante–Rosenfeld tensor is a modification of the stress–energy tensor that is constructed from the canonical stress–energy tensor and the spin current so as to be symmetric yet still conserved.

Natural evolution strategies (NES) are a family of numerical optimization algorithms for black box problems. Similar in spirit to evolution strategies, they iteratively update the (continuous) parameters of a search distribution by following the natural gradient towards higher expected fitness.

In probability theory, an interacting particle system (IPS) is a stochastic process on some configuration space given by a site space, a countably-infinite-order graph and a local state space, a compact metric space . More precisely IPS are continuous-time Markov jump processes describing the collective behavior of stochastically interacting components. IPS are the continuous-time analogue of stochastic cellular automata.

<span class="mw-page-title-main">Symmetry in quantum mechanics</span> Properties underlying modern physics

Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems. In application, understanding symmetries can also provide insights on the eigenstates that can be expected. For example, the existence of degenerate states can be inferred by the presence of non commuting symmetry operators or that the non degenerate states are also eigenvectors of symmetry operators.

In statistics, the variance function is a smooth function that depicts the variance of a random quantity as a function of its mean. The variance function is a measure of heteroscedasticity and plays a large role in many settings of statistical modelling. It is a main ingredient in the generalized linear model framework and a tool used in non-parametric regression, semiparametric regression and functional data analysis. In parametric modeling, variance functions take on a parametric form and explicitly describe the relationship between the variance and the mean of a random quantity. In a non-parametric setting, the variance function is assumed to be a smooth function.

In image analysis, the generalized structure tensor (GST) is an extension of the Cartesian structure tensor to curvilinear coordinates. It is mainly used to detect and to represent the "direction" parameters of curves, just as the Cartesian structure tensor detects and represents the direction in Cartesian coordinates. Curve families generated by pairs of locally orthogonal functions have been the best studied.

References