Berezin integral

Last updated

In mathematical physics, the Berezin integral, named after Felix Berezin, (also known as Grassmann integral, after Hermann Grassmann), is a way to define integration for functions of Grassmann variables (elements of the exterior algebra). It is not an integral in the Lebesgue sense; the word "integral" is used because the Berezin integral has properties analogous to the Lebesgue integral and because it extends the path integral in physics, where it is used as a sum over histories for fermions.

Contents

Definition

Let be the exterior algebra of polynomials in anticommuting elements over the field of complex numbers. (The ordering of the generators is fixed and defines the orientation of the exterior algebra.)

One variable

The Berezin integral over the sole Grassmann variable is defined to be a linear functional

where we define

so that :

These properties define the integral uniquely and imply

Take note that is the most general function of because Grassmann variables square to zero, so cannot have non-zero terms beyond linear order.

Multiple variables

The Berezin integral on is defined to be the unique linear functional with the following properties:

for any where means the left or the right partial derivative. These properties define the integral uniquely.

Notice that different conventions exist in the literature: Some authors define instead [1]

The formula

expresses the Fubini law. On the right-hand side, the interior integral of a monomial is set to be where ; the integral of vanishes. The integral with respect to is calculated in the similar way and so on.

Change of Grassmann variables

Let be odd polynomials in some antisymmetric variables . The Jacobian is the matrix

where refers to the right derivative (). The formula for the coordinate change reads

Integrating even and odd variables

Definition

Consider now the algebra of functions of real commuting variables and of anticommuting variables (which is called the free superalgebra of dimension ). Intuitively, a function is a function of m even (bosonic, commuting) variables and of n odd (fermionic, anti-commuting) variables. More formally, an element is a function of the argument that varies in an open set with values in the algebra Suppose that this function is continuous and vanishes in the complement of a compact set The Berezin integral is the number

Change of even and odd variables

Let a coordinate transformation be given by where are even and are odd polynomials of depending on even variables The Jacobian matrix of this transformation has the block form:

where each even derivative commutes with all elements of the algebra ; the odd derivatives commute with even elements and anticommute with odd elements. The entries of the diagonal blocks and are even and the entries of the off-diagonal blocks are odd functions, where again mean right derivatives.

We now need the Berezinian (or superdeterminant) of the matrix , which is the even function

defined when the function is invertible in Suppose that the real functions define a smooth invertible map of open sets in and the linear part of the map is invertible for each The general transformation law for the Berezin integral reads

where ) is the sign of the orientation of the map The superposition is defined in the obvious way, if the functions do not depend on In the general case, we write where are even nilpotent elements of and set

where the Taylor series is finite.

Useful formulas

The following formulas for Gaussian integrals are used often in the path integral formulation of quantum field theory:

with being a complex matrix.

with being a complex skew-symmetric matrix, and being the Pfaffian of , which fulfills .

In the above formulas the notation is used. From these formulas, other useful formulas follow (See Appendix A in [2] ) :

with being an invertible matrix. Note that these integrals are all in the form of a partition function.

History

Berezin integral was probably first presented by David John Candlin in 1956. [3] Later it was independently discovered by Felix Berezin in 1966. [4]

Unfortunately Candlin's article failed to attract notice, and has been buried in oblivion. Berezin's work came to be widely known, and has almost been cited universally, [footnote 1] becoming an indispensable tool to treat quantum field theory of fermions by functional integral.

Other authors contributed to these developments, including the physicists Khalatnikov [9] (although his paper contains mistakes), Matthews and Salam, [10] and Martin. [11]

See also

Footnote

  1. For example many famous textbooks of quantum field theory cite Berezin. [5] [6] [7] One exception was Stanley Mandelstam who is said to have used to cite Candlin's work. [8]

Related Research Articles

In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference.

In the mathematical field of differential geometry, a metric tensor is an additional structure on a manifold M that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there. More precisely, a metric tensor at a point p of M is a bilinear form defined on the tangent space at p, and a metric field on M consists of a metric tensor at each point p of M that varies smoothly with p.

<span class="mw-page-title-main">Beta function</span> Mathematical function

In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral

<span class="mw-page-title-main">Differential operator</span> Typically linear operator defined in terms of differentiation of functions

In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function.

In mathematics, integral equations are equations in which an unknown function appears under an integral sign. In mathematical notation, integral equations may thus be expressed as being of the form:

<span class="mw-page-title-main">Gaussian integral</span> Integral of the Gaussian function, equal to sqrt(π)

The Gaussian integral, also known as the Euler–Poisson integral, is the integral of the Gaussian function over the entire real line. Named after the German mathematician Carl Friedrich Gauss, the integral is

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

In mathematical statistics, the Kullback–Leibler (KL) divergence, denoted , is a type of statistical distance: a measure of how one probability distribution P is different from a second, reference probability distribution Q. A simple interpretation of the KL divergence of P from Q is the expected excess surprise from using Q as a model when the actual distribution is P. While it is a measure of how different two distributions are, and in some sense is thus a "distance", it is not actually a metric, which is the most familiar and formal type of distance. In particular, it is not symmetric in the two distributions, and does not satisfy the triangle inequality. Instead, in terms of information geometry, it is a type of divergence, a generalization of squared distance, and for certain classes of distributions, it satisfies a generalized Pythagorean theorem.

In differential geometry, a spray is a vector field H on the tangent bundle TM that encodes a quasilinear second order system of ordinary differential equations on the base manifold M. Usually a spray is required to be homogeneous in the sense that its integral curves t→ΦHt(ξ)∈TM obey the rule ΦHt(λξ)=ΦHλt(ξ) in positive re-parameterizations. If this requirement is dropped, H is called a semi-spray.

In differential geometry, a field in mathematics, Darboux's theorem is a theorem providing a normal form for special classes of differential 1-forms, partially generalizing the Frobenius integration theorem. It is named after Jean Gaston Darboux who established it as the solution of the Pfaff problem.

In differential geometry, the Laplace–Beltrami operator is a generalization of the Laplace operator to functions defined on submanifolds in Euclidean space and, even more generally, on Riemannian and pseudo-Riemannian manifolds. It is named after Pierre-Simon Laplace and Eugenio Beltrami.

In mathematics, a volume element provides a means for integrating a function with respect to volume in various coordinate systems such as spherical coordinates and cylindrical coordinates. Thus a volume element is an expression of the form

In mathematical physics, a Grassmann number, named after Hermann Grassmann, is an element of the exterior algebra over the complex numbers. The special case of a 1-dimensional algebra is known as a dual number. Grassmann numbers saw an early use in physics to express a path integral representation for fermionic fields, although they are now widely used as a foundation for superspace, on which supersymmetry is constructed.

In classical mechanics, holonomic constraints are relations between the position variables that can be expressed in the following form:

In statistics, the observed information, or observed Fisher information, is the negative of the second derivative of the "log-likelihood". It is a sample-based version of the Fisher information.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

<span class="mw-page-title-main">Gravitational lensing formalism</span>

In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to

<span class="mw-page-title-main">Lagrangian mechanics</span> Formulation of classical mechanics

In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle. It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his presentation to the Turin Academy of Science in 1760 culminating in his 1788 grand opus, Mécanique analytique.

In mathematical analysis, the Szegő limit theorems describe the asymptotic behaviour of the determinants of large Toeplitz matrices. They were first proved by Gábor Szegő.

In image analysis, the generalized structure tensor (GST) is an extension of the Cartesian structure tensor to curvilinear coordinates. It is mainly used to detect and to represent the "direction" parameters of curves, just as the Cartesian structure tensor detects and represents the direction in Cartesian coordinates. Curve families generated by pairs of locally orthogonal functions have been the best studied.

References

  1. Mirror symmetry. Hori, Kentaro. Providence, RI: American Mathematical Society. 2003. p. 155. ISBN   0-8218-2955-6. OCLC   52374327.{{cite book}}: CS1 maint: others (link)
  2. S. Caracciolo, A. D. Sokal and A. Sportiello, Algebraic/combinatorial proofs of Cayley-type identities for derivatives of determinants and pfaffians, Advances in Applied Mathematics, Volume 50, Issue 4, 2013, https://doi.org/10.1016/j.aam.2012.12.001; https://arxiv.org/abs/1105.6270
  3. D.J. Candlin (1956). "On Sums over Trajectories for Systems With Fermi Statistics". Nuovo Cimento. 4 (2): 231–239. Bibcode:1956NCim....4..231C. doi:10.1007/BF02745446. S2CID   122333001.
  4. A. Berezin, The Method of Second Quantization, Academic Press, (1966)
  5. Itzykson, Claude; Zuber, Jean Bernard (1980). Quantum field theory. McGraw-Hill International Book Co. Chap 9, Notes. ISBN   0070320713.
  6. Peskin, Michael Edward; Schroeder, Daniel V. (1995). An introduction to quantum field theory. Reading: Addison-Wesley. Sec 9.5.
  7. Weinberg, Steven (1995). The Quantum Theory of Fields. Vol. 1. Cambridge University Press. Chap 9, Bibliography. ISBN   0521550017.
  8. Ron Maimon (2012-06-04). "What happened to David John Candlin?". physics.stackexchange.com. Retrieved 2024-04-08.
  9. Khalatnikov, I.M. (1955). "Predstavlenie funkzij Grina v kvantovoj elektrodinamike v forme kontinualjnyh integralov" [The Representation of Green's Function in Quantum Electrodynamics in the Form of Continual Integrals](PDF). Journal of Experimental and Theoretical Physics (in Russian). 28 (3): 633. Archived from the original (PDF) on 2021-04-19. Retrieved 2019-06-23.
  10. Matthews, P. T.; Salam, A. (1955). "Propagators of quantized field". Il Nuovo Cimento. 2 (1). Springer Science and Business Media LLC: 120–134. Bibcode:1955NCimS...2..120M. doi:10.1007/bf02856011. ISSN   0029-6341. S2CID   120719536.
  11. Martin, J. L. (23 June 1959). "The Feynman principle for a Fermi system". Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 251 (1267). The Royal Society: 543–549. Bibcode:1959RSPSA.251..543M. doi:10.1098/rspa.1959.0127. ISSN   2053-9169. S2CID   123545904.

Further reading