Pfaffian

Last updated

In mathematics, the determinant of an m-by-m skew-symmetric matrix can always be written as the square of a polynomial in the matrix entries, a polynomial with integer coefficients that only depends on m. When m is odd, the polynomial is zero, and when m is even, it is a nonzero polynomial of degree m/2, and is unique up to multiplication by ±1. The convention on skew-symmetric tridiagonal matrices, given below in the examples, then determines one specific polynomial, called the Pfaffian polynomial. The value of this polynomial, when applied to the entries of a skew-symmetric matrix, is called the Pfaffian of that matrix. The term Pfaffian was introduced by Cayley  ( 1852 ), who indirectly named them after Johann Friedrich Pfaff.

Contents

Explicitly, for a skew-symmetric matrix ,

which was first proved by Cayley  ( 1849 ), who cites Jacobi for introducing these polynomials in work on Pfaffian systems of differential equations. Cayley obtains this relation by specialising a more general result on matrices that deviate from skew symmetry only in the first row and the first column. The determinant of such a matrix is the product of the Pfaffians of the two matrices obtained by first setting in the original matrix the upper left entry to zero and then copying, respectively, the negative transpose of the first row to the first column and the negative transpose of the first column to the first row. This is proved by induction by expanding the determinant on minors and employing the recursion formula below.

Examples

(3 is odd, so the of B is 0)

The Pfaffian of a 2n × 2n skew-symmetric tridiagonal matrix is given as

(Note that any skew-symmetric matrix can be reduced to this form; see Spectral theory of a skew-symmetric matrix.)

Formal definition

Let A = (aij) be a 2n × 2n skew-symmetric matrix. The Pfaffian of A is explicitly defined by the formula

where S2n is the symmetric group of degree 2n and sgn(σ) is the signature of σ.

One can make use of the skew-symmetry of A to avoid summing over all possible permutations. Let Π be the set of all partitions of {1, 2, ..., 2n} into pairs without regard to order. There are (2n)!/(2nn!) = (2n − 1)!! such partitions. An element α ∈ Π can be written as

with ik < jk and . Let

be the corresponding permutation. Given a partition α as above, define

The Pfaffian of A is then given by

The Pfaffian of a n × n skew-symmetric matrix for n odd is defined to be zero, as the determinant of an odd skew-symmetric matrix is zero, since for a skew-symmetric matrix, and for n odd, this implies .

Recursive definition

By convention, the Pfaffian of the 0×0 matrix is equal to one. The Pfaffian of a skew-symmetric 2n × 2n matrix A with n > 0 can be computed recursively as

where the index i can be selected arbitrarily, is the Heaviside step function, and denotes the matrix A with both the i-th and j-th rows and columns removed. [1] Note how for the special choice this reduces to the simpler expression:

Alternative definitions

One can associate to any skew-symmetric 2n × 2n matrix A = (aij) a bivector

where {e1, e2, ..., e2n} is the standard basis of R2n. The Pfaffian is then defined by the equation

here ωn denotes the wedge product of n copies of ω.

Equivalently, we can consider the bivector (which is more convenient when we do not want to impose the summation constraint ): which gives

A non-zero generalisation of the Pfaffian to odd-dimensional matrices is given in the work of de Bruijn on multiple integrals involving determinants. [2] In particular for any m×m matrix A, we use the formal definition above but set . For m odd, one can then show that this is equal to the usual Pfaffian of an (m+1)×(m+1)-dimensional skew symmetric matrix where we have added an (m+1)th column consisting of m elements 1, an (m+1)th row consisting of m elements −1, and the corner element is zero. The usual properties of Pfaffians, for example the relation to the determinant, then apply to this extended matrix.

Properties and identities

Pfaffians have the following properties, which are similar to those of determinants.

Using these properties, Pfaffians can be computed quickly, akin to the computation of determinants.

Miscellaneous

For a 2n× 2n skew-symmetric matrix A

For an arbitrary 2n× 2n matrix B,

Substituting in this equation B = Am, one gets for all integer m

Proof of :

As previously said, The same with : where we defined .

Since the proof is finished.

Proof of :

Since is an equation of polynomials, it suffices to prove it for real matrices, and it would automatically apply for complex matrices as well.

By the spectral theory of skew-symmetric real matrices, , where is orthogonal and for real numbers . Now apply the previous theorem, we have .

Derivative identities

If A depends on some variable xi, then the gradient of a Pfaffian is given by

and the Hessian of a Pfaffian is given by

Trace identities

The product of the Pfaffians of skew-symmetric matrices A and B can be represented in the form of an exponential

Suppose A and B are 2n × 2n skew-symmetric matrices, then

and Bn(s1,s2,...,sn) are Bell polynomials.

Block matrices

For a block-diagonal matrix

For an arbitrary n×n matrix M:

It is often required to compute the Pfaffian of a skew-symmetric matrix with the block structure

where and are skew-symmetric matrices and is a general rectangular matrix.

When is invertible, one has

This can be seen from Aitken block-diagonalization formula, [3] [4] [5]

This decomposition involves a congruence transformations that allow to use the Pfaffian property .

Similarly, when is invertible, one has

as can be seen by employing the decomposition

Calculating the Pfaffian numerically

Suppose A is a 2n × 2n skew-symmetric matrices, then

where is the second Pauli matrix, is an identity matrix of dimension n and we took the trace over a matrix logarithm.

This equality is based on the trace identity

and on the observation that .

Since calculating the logarithm of a matrix is a computationally demanding task, one can instead compute all eigenvalues of , take the log of all of these and sum them up. This procedure merely exploits the property . This can be implemented in Mathematica with a single statement:

Pf[x_] := Module[{n = Dimensions[x][[1]] / 2}, I^(n^2) Exp[ 1/2 Total[ Log[Eigenvalues[ Dot[Transpose[KroneckerProduct[PauliMatrix[2], IdentityMatrix[n]]], x] ]]]]]

However, this algorithm is unstable when the Pfaffian is large. The eigenvalues of will generally be complex, and the logarithm of these complex eigenvalues are generally taken to be in . Under the summation, for a real valued Pfaffian, the argument of the exponential will be given in the form for some integer . When is very large, rounding errors in computing the resulting sign from the complex phase can lead to a non-zero imaginary component.

For other (more) efficient algorithms see Wimmer 2012.

Applications

See also

Notes

  1. "Archived copy" (PDF). Archived from the original (PDF) on 2016-03-05. Retrieved 2015-03-31.{{cite web}}: CS1 maint: archived copy as title (link)
  2. Bruijn, de, N.G. (1955). "On some multiple integrals involving determinants". Journal of the Indian Mathematical Society. New Series. 19: 133–151. ISSN   0019-5839.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. A. C. Aitken. Determinants and matrices. Oliver and Boyd, Edinburgh, fourth edition, 1939.
  4. Zhang, Fuzhen, ed. The Schur complement and its applications. Vol. 4. Springer Science & Business Media, 2006.
  5. Bunch, James R. "A note on the stable decomposition of skew-symmetric matrices." Mathematics of Computation 38.158 (1982): 475-479.

Related Research Articles

In mathematics, the determinant is a scalar-valued function of the entries of a square matrix. The determinant of a matrix A is commonly denoted det(A), det A, or |A|. Its value characterizes some properties of the matrix and the linear map represented, on a given basis, by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the corresponding linear map is an isomorphism.

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

<span class="mw-page-title-main">Matrix multiplication</span> Mathematical operation in linear algebra

In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices A and B is denoted as AB.

<span class="mw-page-title-main">Square matrix</span> Matrix with the same number of rows and columns

In mathematics, a square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order . Any two square matrices of the same order can be added and multiplied.

<span class="mw-page-title-main">Cayley–Hamilton theorem</span> Every square matrix over a commutative ring satisfies its own characteristic equation

In linear algebra, the Cayley–Hamilton theorem states that every square matrix over a commutative ring satisfies its own characteristic equation.

<span class="mw-page-title-main">Orthogonal group</span> Type of group in mathematics

In mathematics, the orthogonal group in dimension n, denoted O(n), is the group of distance-preserving transformations of a Euclidean space of dimension n that preserve a fixed point, where the group operation is given by composing transformations. The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of n × n orthogonal matrices, where the group operation is given by matrix multiplication (an orthogonal matrix is a real matrix whose inverse equals its transpose). The orthogonal group is an algebraic group and a Lie group. It is compact.

<span class="mw-page-title-main">Symplectic group</span> Mathematical group

In mathematics, the name symplectic group can refer to two different, but closely related, collections of mathematical groups, denoted Sp(2n, F) and Sp(n) for positive integer n and field F (usually C or R). The latter is called the compact symplectic group and is also denoted by . Many authors prefer slightly different notations, usually differing by factors of 2. The notation used here is consistent with the size of the most common matrices which represent the groups. In Cartan's classification of the simple Lie algebras, the Lie algebra of the complex group Sp(2n, C) is denoted Cn, and Sp(n) is the compact real form of Sp(2n, C). Note that when we refer to the (compact) symplectic group it is implied that we are talking about the collection of (compact) symplectic groups, indexed by their dimension n.

In mathematics, a symplectic matrix is a matrix with real entries that satisfies the condition

<span class="mw-page-title-main">Special unitary group</span> Group of unitary matrices with determinant of 1

In mathematics, the special unitary group of degree n, denoted SU(n), is the Lie group of n × n unitary matrices with determinant 1.

In mathematics, particularly in linear algebra, a skew-symmetricmatrix is a square matrix whose transpose equals its negative. That is, it satisfies the condition

In linear algebra, the adjugate of a square matrix A is the transpose of its cofactor matrix and is denoted by adj(A). It is also occasionally known as adjunct matrix, or "adjoint", though the latter term today normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose.

In linear algebra, an n-by-n square matrix A is called invertible if there exists an n-by-n square matrix B such thatwhere In denotes the n-by-n identity matrix and the multiplication used is ordinary matrix multiplication. If this is the case, then the matrix B is uniquely determined by A, and is called the (multiplicative) inverse of A, denoted by A−1. Matrix inversion is the process of finding the matrix which when multiplied by the original matrix gives the identity matrix.

In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an complex matrix is an matrix obtained by transposing and applying complex conjugation to each entry. There are several notations, such as or , , or .

In linear algebra, a minor of a matrix A is the determinant of some smaller square matrix, cut down from A by removing one or more of its rows and columns. Minors obtained by removing just one row and one column from square matrices are required for calculating matrix cofactors, which in turn are useful for computing both the determinant and inverse of square matrices. The requirement that the square matrix be smaller than the original matrix is often omitted in the definition.

In mathematics, the indefinite orthogonal group, O(p, q) is the Lie group of all linear transformations of an n-dimensional real vector space that leave invariant a nondegenerate, symmetric bilinear form of signature (p, q), where n = p + q. It is also called the pseudo-orthogonal group or generalized orthogonal group. The dimension of the group is n(n − 1)/2.

In the study of Dirac fields in quantum field theory, Richard Feynman invented the convenient Feynman slash notation. If A is a covariant vector,

In mathematics, a logarithm of a matrix is another matrix such that the matrix exponential of the latter matrix equals the original matrix. It is thus a generalization of the scalar logarithm and in some sense an inverse function of the matrix exponential. Not all matrices have a logarithm and those matrices that do have a logarithm may have more than one logarithm. The study of logarithms of matrices leads to Lie theory since when a matrix has a logarithm then it is in an element of a Lie group and the logarithm is the corresponding element of the vector space of the Lie algebra.

<span class="mw-page-title-main">Classical group</span>

In mathematics, the classical groups are defined as the special linear groups over the reals , the complex numbers and the quaternions together with special automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or skew-Hermitian sesquilinear forms defined on real, complex and quaternionic finite-dimensional vector spaces. Of these, the complex classical Lie groups are four infinite families of Lie groups that together with the exceptional groups exhaust the classification of simple Lie groups. The compact classical groups are compact real forms of the complex classical groups. The finite analogues of the classical groups are the classical groups of Lie type. The term "classical group" was coined by Hermann Weyl, it being the title of his 1939 monograph The Classical Groups.

In probability theory, the family of complex normal distributions, denoted or , characterizes complex random variables whose real and imaginary parts are jointly normal. The complex normal family has three parameters: location parameter μ, covariance matrix , and the relation matrix . The standard complex normal is the univariate distribution with , , and .

In linear algebra, a branch of mathematics, a (multiplicative) compound matrix is a matrix whose entries are all minors, of a given size, of another matrix. Compound matrices are closely related to exterior algebras, and their computation appears in a wide array of problems, such as in the analysis of nonlinear time-varying dynamical systems and generalizations of positive systems, cooperative systems and contracting systems.

References