In mathematics, a logarithm of a matrix is another matrix such that the matrix exponential of the latter matrix equals the original matrix. It is thus a generalization of the scalar logarithm and in some sense an inverse function of the matrix exponential. Not all matrices have a logarithm and those matrices that do have a logarithm may have more than one logarithm. The study of logarithms of matrices leads to Lie theory since when a matrix has a logarithm then it is in an element of a Lie group and the logarithm is the corresponding element of the vector space of the Lie algebra.
The exponential of a matrix A is defined by
Given a matrix B, another matrix A is said to be a matrix logarithm of B if eA = B.
Because the exponential function is not bijective for complex numbers (e.g. ), numbers can have multiple complex logarithms, and as a consequence of this, some matrices may have more than one logarithm, as explained below. If the matrix logarithm of exists and is unique, then it is written as in which case
If B is sufficiently close to the identity matrix, then a logarithm of B may be computed by means of the power series
which can be rewritten as
Specifically, if , then the preceding series converges and . [1]
The rotations in the plane give a simple example. A rotation of angle α around the origin is represented by the 2×2-matrix
For any integer n, the matrix
is a logarithm of A.
Proof |
---|
⇔ where ... qed. |
Thus, the matrix A has infinitely many logarithms. This corresponds to the fact that the rotation angle is only determined up to multiples of 2π.
In the language of Lie theory, the rotation matrices A are elements of the Lie group SO(2). The corresponding logarithms B are elements of the Lie algebra so(2), which consists of all skew-symmetric matrices. The matrix
is a generator of the Lie algebra so(2).
The question of whether a matrix has a logarithm has the easiest answer when considered in the complex setting. A complex matrix has a logarithm if and only if it is invertible. [2] The logarithm is not unique, but if a matrix has no negative real eigenvalues, then there is a unique logarithm that has eigenvalues all lying in the strip . This logarithm is known as the principal logarithm. [3]
The answer is more involved in the real setting. A real matrix has a real logarithm if and only if it is invertible and each Jordan block belonging to a negative eigenvalue occurs an even number of times. [4] If an invertible real matrix does not satisfy the condition with the Jordan blocks, then it has only non-real logarithms. This can already be seen in the scalar case: no branch of the logarithm can be real at -1. The existence of real matrix logarithms of real 2×2 matrices is considered in a later section.
If A and B are both positive-definite matrices, then
Suppose that A and B commute, meaning that AB = BA. Then
if and only if , where is an eigenvalue of and is the corresponding eigenvalue of . [5] In particular, when A and B commute and are both positive-definite. Setting B = A−1 in this equation yields
Similarly, for non-commuting and , one can show that [6]
More generally, a series expansion of in powers of can be obtained using the integral definition of the logarithm
applied to both and in the limit .
A rotation R ∈ SO(3) in 3 is given by a 3×3 orthogonal matrix.
The logarithm of such a rotation matrix R can be readily computed from the antisymmetric part of Rodrigues' rotation formula, explicitly in Axis angle. It yields the logarithm of minimal Frobenius norm, but fails when R has eigenvalues equal to −1 where this is not unique.
Further note that, given rotation matrices A and B,
is the geodesic distance on the 3D manifold of rotation matrices.
A method for finding log A for a diagonalizable matrix A is the following:
That the logarithm of A might be a complex matrix even if A is real then follows from the fact that a matrix with real and positive entries might nevertheless have negative or even complex eigenvalues (this is true for example for rotation matrices). The non-uniqueness of the logarithm of a matrix follows from the non-uniqueness of the logarithm of a complex number.
The algorithm illustrated above does not work for non-diagonalizable matrices, such as
For such matrices one needs to find its Jordan decomposition and, rather than computing the logarithm of diagonal entries as above, one would calculate the logarithm of the Jordan blocks.
The latter is accomplished by noticing that one can write a Jordan block as
where K is a matrix with zeros on and under the main diagonal. (The number λ is nonzero by the assumption that the matrix whose logarithm one attempts to take is invertible.)
Then, by the Mercator series
one gets
This series has a finite number of terms (Km is zero if m is equal to or greater than the dimension of K), and so its sum is well-defined.
Example. Using this approach, one finds
which can be verified by plugging the right-hand side into the matrix exponential:
A square matrix represents a linear operator on the Euclidean space Rn where n is the dimension of the matrix. Since such a space is finite-dimensional, this operator is actually bounded.
Using the tools of holomorphic functional calculus, given a holomorphic function f defined on an open set in the complex plane and a bounded linear operator T, one can calculate f(T) as long as f is defined on the spectrum of T.
The function f(z) = log z can be defined on any simply connected open set in the complex plane not containing the origin, and it is holomorphic on such a domain. This implies that one can define ln T as long as the spectrum of T does not contain the origin and there is a path going from the origin to infinity not crossing the spectrum of T (e.g., if the spectrum of T is a circle with the origin inside of it, it is impossible to define ln T).
The spectrum of a linear operator on Rn is the set of eigenvalues of its matrix, and so is a finite set. As long as the origin is not in the spectrum (the matrix is invertible), the path condition from the previous paragraph is satisfied, and ln T is well-defined. The non-uniqueness of the matrix logarithm follows from the fact that one can choose more than one branch of the logarithm which is defined on the set of eigenvalues of a matrix.
In the theory of Lie groups, there is an exponential map from a Lie algebra to the corresponding Lie group G
For matrix Lie groups, the elements of and G are square matrices and the exponential map is given by the matrix exponential. The inverse map is multivalued and coincides with the matrix logarithm discussed here. The logarithm maps from the Lie group G into the Lie algebra . Note that the exponential map is a local diffeomorphism between a neighborhood U of the zero matrix and a neighborhood V of the identity matrix . [7] Thus the (matrix) logarithm is well-defined as a map,
An important corollary of Jacobi's formula then is
If a 2 × 2 real matrix has a negative determinant, it has no real logarithm. Note first that any 2 × 2 real matrix can be considered one of the three types of the complex number z = x + yε, where ε2 ∈ { −1, 0, +1 }. This z is a point on a complex subplane of the ring of matrices. [8]
The case where the determinant is negative only arises in a plane with ε2 =+1, that is a split-complex number plane. Only one quarter of this plane is the image of the exponential map, so the logarithm is only defined on that quarter (quadrant). The other three quadrants are images of this one under the Klein four-group generated by ε and −1.
For example, let a = log 2 ; then cosh a = 5/4 and sinh a = 3/4. For matrices, this means that
So this last matrix has logarithm
These matrices, however, do not have a logarithm:
They represent the three other conjugates by the four-group of the matrix above that does have a logarithm.
A non-singular 2 × 2 matrix does not necessarily have a logarithm, but it is conjugate by the four-group to a matrix that does have a logarithm.
It also follows, that, e.g., a square root of this matrix A is obtainable directly from exponentiating (logA)/2,
For a richer example, start with a Pythagorean triple (p,q,r) and let a = log(p + r) − log q. Then
Now
Thus
has the logarithm matrix
where a = log(p + r) − log q.
In mathematics, the determinant is a scalar-valued function of the entries of a square matrix. The determinant of a matrix A is commonly denoted det(A), det A, or |A|. Its value characterizes some properties of the matrix and the linear map represented, on a given basis, by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the corresponding linear map is an isomorphism.
In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.
In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.
In linear algebra, the Cayley–Hamilton theorem states that every square matrix over a commutative ring satisfies its own characteristic equation.
In mathematics, particularly in linear algebra, a skew-symmetricmatrix is a square matrix whose transpose equals its negative. That is, it satisfies the condition
In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients. The characteristic polynomial of an endomorphism of a finite-dimensional vector space is the characteristic polynomial of the matrix of that endomorphism over any base. The characteristic equation, also known as the determinantal equation, is the equation obtained by equating the characteristic polynomial to zero.
In linear algebra, a square matrix is called diagonalizable or non-defective if it is similar to a diagonal matrix. That is, if there exists an invertible matrix and a diagonal matrix such that . This is equivalent to . This property exists for any linear map: for a finite-dimensional vector space , a linear map is called diagonalizable if there exists an ordered basis of consisting of eigenvectors of . These definitions are equivalent: if has a matrix representation as above, then the column vectors of form a basis consisting of eigenvectors of , and the diagonal entries of are the corresponding eigenvalues of ; with respect to this eigenvector basis, is represented by .
In mathematics, the spectral radius of a square matrix is the maximum of the absolute values of its eigenvalues. More generally, the spectral radius of a bounded linear operator is the supremum of the absolute values of the elements of its spectrum. The spectral radius is often denoted by ρ(·).
In numerical analysis, one of the most important problems is designing efficient and stable algorithms for finding the eigenvalues of a matrix. These eigenvalue algorithms may also find eigenvectors.
In mathematics, the determinant of an m-by-m skew-symmetric matrix can always be written as the square of a polynomial in the matrix entries, a polynomial with integer coefficients that only depends on m. When m is odd, the polynomial is zero, and when m is even, it is a nonzero polynomial of degree m/2, and is unique up to multiplication by ±1. The convention on skew-symmetric tridiagonal matrices, given below in the examples, then determines one specific polynomial, called the Pfaffian polynomial. The value of this polynomial, when applied to the entries of a skew-symmetric matrix, is called the Pfaffian of that matrix. The term Pfaffian was introduced by Cayley, who indirectly named them after Johann Friedrich Pfaff.
In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function. It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group.
In linear algebra, a circulant matrix is a square matrix in which all rows are composed of the same elements and each row is rotated one element to the right relative to the preceding row. It is a particular kind of Toeplitz matrix.
In mathematics, the polar decomposition of a square real or complex matrix is a factorization of the form , where is a unitary matrix and is a positive semi-definite Hermitian matrix, both square and of the same size.
In linear algebra, an eigenvector or characteristic vector is a vector that has its direction unchanged by a given linear transformation. More precisely, an eigenvector, , of a linear transformation, , is scaled by a constant factor, , when the linear transformation is applied to it: . It is often important to know these vectors in linear algebra. The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor .
In the mathematical discipline of matrix theory, a Jordan matrix, named after Camille Jordan, is a block diagonal matrix over a ring R, where each block along the diagonal, called a Jordan block, has the following form:
In statistics, Bayesian multivariate linear regression is a Bayesian approach to multivariate linear regression, i.e. linear regression where the predicted outcome is a vector of correlated random variables rather than a single scalar random variable. A more general treatment of this approach can be found in the article MMSE estimator.
In mathematics, every analytic function can be used for defining a matrix function that maps square matrices with complex entries to square matrices of the same size.
In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the decomposition is called "spectral decomposition", derived from the spectral theorem.
In mathematics, a Carleman matrix is a matrix used to convert function composition into matrix multiplication. It is often used in iteration theory to find the continuous iteration of functions which cannot be iterated by pattern recognition alone. Other uses of Carleman matrices occur in the theory of probability generating functions, and Markov chains.
A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders. A matrix differential equation contains more than one function stacked into vector form with a matrix relating the functions to their derivatives.