Idempotent (ring theory)

Last updated

In ring theory, a branch of mathematics, an idempotent element or simply idempotent of a ring is an element a such that a2 = a. [1] [lower-alpha 1] That is, the element is idempotent under the ring's multiplication. Inductively then, one can also conclude that a = a2 = a3 = a4 = ... = an for any positive integer n. For example, an idempotent element of a matrix ring is precisely an idempotent matrix.

Contents

For general rings, elements idempotent under multiplication are involved in decompositions of modules, and connected to homological properties of the ring. In Boolean algebra, the main objects of study are rings in which all elements are idempotent under both addition and multiplication.

Examples

Quotients of Z

One may consider the ring of integers modulo n, where n is squarefree. By the Chinese remainder theorem, this ring factors into the product of rings of integers modulo p, where p is prime. Now each of these factors is a field, so it is clear that the factors' only idempotents will be 0 and 1. That is, each factor has two idempotents. So if there are m factors, there will be 2m idempotents.

We can check this for the integers mod 6, R = Z / 6Z. Since 6 has two prime factors (2 and 3) it should have 22 idempotents.

02 ≡ 0 ≡ 0 (mod 6)
12 ≡ 1 ≡ 1 (mod 6)
22 ≡ 4 ≡ 4 (mod 6)
32 ≡ 9 ≡ 3 (mod 6)
42 ≡ 16 ≡ 4 (mod 6)
52 ≡ 25 ≡ 1 (mod 6)

From these computations, 0, 1, 3, and 4 are idempotents of this ring, while 2 and 5 are not. This also demonstrates the decomposition properties described below: because 3 + 4 ≡ 1 (mod 6), there is a ring decomposition 3Z / 6Z ⊕ 4Z / 6Z. In 3Z / 6Z the multiplicative identity is 3 + 6Z and in 4Z / 6Z the multiplicative identity is 4 + 6Z.

Quotient of polynomial ring

Given a ring R and an element fR such that f2 ≠ 0, the quotient ring

R / (f2f)

has the idempotent f. For example, this could be applied to xZ[x], or any polynomial fk[x1, ..., xn].

Idempotents in split-quaternion rings

There is a hyperboloid of idempotents in the split-quaternion ring.[ citation needed ]

Types of ring idempotents

A partial list of important types of idempotents includes:

Any non-trivial idempotent a is a zero divisor (because ab = 0 with neither a nor b being zero, where b = 1 − a). This shows that integral domains and division rings do not have such idempotents. Local rings also do not have such idempotents, but for a different reason. The only idempotent contained in the Jacobson radical of a ring is 0.

Rings characterized by idempotents

Role in decompositions

The idempotents of R have an important connection to decomposition of R-modules. If M is an R-module and E = EndR(M) is its ring of endomorphisms, then AB = M if and only if there is a unique idempotent e in E such that A = eM and B = (1 − e)M. Clearly then, M is directly indecomposable if and only if 0 and 1 are the only idempotents in E. [2]

In the case when M = R (assumed unital), the endomorphism ring EndR(R) = R, where each endomorphism arises as left multiplication by a fixed ring element. With this modification of notation, AB = R as right modules if and only if there exists a unique idempotent e such that eR = A and (1 − e)R = B. Thus every direct summand of R is generated by an idempotent.

If a is a central idempotent, then the corner ring aRa = Ra is a ring with multiplicative identity a. Just as idempotents determine the direct decompositions of R as a module, the central idempotents of R determine the decompositions of R as a direct sum of rings. If R is the direct sum of the rings R1, ..., Rn, then the identity elements of the rings Ri are central idempotents in R, pairwise orthogonal, and their sum is 1. Conversely, given central idempotents a1, ..., an in R that are pairwise orthogonal and have sum 1, then R is the direct sum of the rings Ra1, ..., Ran. So in particular, every central idempotent a in R gives rise to a decomposition of R as a direct sum of the corner rings aRa and (1 − a)R(1 − a). As a result, a ring R is directly indecomposable as a ring if and only if the identity 1 is centrally primitive.

Working inductively, one can attempt to decompose 1 into a sum of centrally primitive elements. If 1 is centrally primitive, we are done. If not, it is a sum of central orthogonal idempotents, which in turn are primitive or sums of more central idempotents, and so on. The problem that may occur is that this may continue without end, producing an infinite family of central orthogonal idempotents. The condition "R does not contain infinite sets of central orthogonal idempotents" is a type of finiteness condition on the ring. It can be achieved in many ways, such as requiring the ring to be right Noetherian. If a decomposition R = c1Rc2R ⊕ ... ⊕ cnR exists with each ci a centrally primitive idempotent, then R is a direct sum of the corner rings ciRci, each of which is ring irreducible. [3]

For associative algebras or Jordan algebras over a field, the Peirce decomposition is a decomposition of an algebra as a sum of eigenspaces of commuting idempotent elements.

Relation with involutions

If a is an idempotent of the endomorphism ring EndR(M), then the endomorphism f = 1 − 2a is an R-module involution of M. That is, f is an R-module homomorphism such that f2 is the identity endomorphism of M.

An idempotent element a of R and its associated involution f gives rise to two involutions of the module R, depending on viewing R as a left or right module. If r represents an arbitrary element of R, f can be viewed as a right R-module homomorphism rfr so that ffr = r, or f can also be viewed as a left R-module homomorphism rrf, where rff = r.

This process can be reversed if 2 is an invertible element of R: [lower-alpha 2] if b is an involution, then 2−1(1 − b) and 2−1(1 + b) are orthogonal idempotents, corresponding to a and 1 − a. Thus for a ring in which 2 is invertible, the idempotent elements correspond to involutions in a one-to-one manner.

Category of R-modules

Lifting idempotents also has major consequences for the category of R-modules. All idempotents lift modulo I if and only if every R direct summand of R/I has a projective cover as an R-module. [4] Idempotents always lift modulo nil ideals and rings for which R is I-adically complete.

Lifting is most important when I = J(R), the Jacobson radical of R. Yet another characterization of semiperfect rings is that they are semilocal rings whose idempotents lift modulo J(R). [5]

Lattice of idempotents

One may define a partial order on the idempotents of a ring as follows: if a and b are idempotents, we write ab if and only if ab = ba = a. With respect to this order, 0 is the smallest and 1 the largest idempotent. For orthogonal idempotents a and b, a + b is also idempotent, and we have aa + b and ba + b. The atoms of this partial order are precisely the primitive idempotents. [6]

When the above partial order is restricted to the central idempotents of R, a lattice structure, or even a Boolean algebra structure, can be given. For two central idempotents e and f, the complement is given by

¬e = 1 − e,

the meet is given by

ef = ef.

and the join is given by

ef = ¬(¬e ∧ ¬f) = e + fef

The ordering now becomes simply ef if and only if eRfR, and the join and meet satisfy (ef)R = eR + fR and (ef)R = eRfR = (eR)(fR). It is shown in Goodearl 1991 , p. 99 that if R is von Neumann regular and right self-injective, then the lattice is a complete lattice.

Notes

  1. Idempotent and nilpotent were introduced by Benjamin Peirce in 1870.
  2. Rings in which 2 is not invertible are not difficult to find. The element 2 is not invertible in any ring of characteristic 2, which includes Boolean rings.[ clarification needed ]

Citations

Related Research Articles

In ring theory, a branch of abstract algebra, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if R and S are rings, then a ring homomorphism is a function f : RS such that f is:

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

<span class="mw-page-title-main">Cyclic group</span> Mathematical group that can be generated as the set of powers of a single element

In abstract algebra, a cyclic group or monogenous group is a group, denoted Cn, that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element g such that every other element of the group may be obtained by repeatedly applying the group operation to g or its inverse. Each element can be written as an integer power of g in multiplicative notation, or as an integer multiple of g in additive notation. This element g is called a generator of the group.

In mathematics, the endomorphisms of an abelian group X form a ring. This ring is called the endomorphism ring of X, denoted by End(X); the set of all homomorphisms of X into itself. Addition of endomorphisms arises naturally in a pointwise manner and multiplication via endomorphism composition. Using these operations, the set of endomorphisms of an abelian group forms a (unital) ring, with the zero map as additive identity and the identity map as multiplicative identity.

Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject.

In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of module also generalizes the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers.

In mathematics, and more specifically in abstract algebra, a *-algebra is a mathematical structure consisting of two involutive ringsR and A, where R is commutative and A has the structure of an associative algebra over R. Involutive algebras generalize the idea of a number system equipped with conjugation, for example the complex numbers and complex conjugation, matrices over the complex numbers and conjugate transpose, and linear operators over a Hilbert space and Hermitian adjoints. However, it may happen that an algebra admits no involution.

<span class="mw-page-title-main">Involution (mathematics)</span> Function that is its own inverse

In mathematics, an involution, involutory function, or self-inverse function is a function f that is its own inverse,

In mathematics and theoretical physics, a superalgebra is a Z2-graded algebra. That is, it is an algebra over a commutative ring or field with a decomposition into "even" and "odd" pieces and a multiplication operator that respects the grading.

In abstract algebra, a matrix ring is a set of matrices with entries in a ring R that form a ring under matrix addition and matrix multiplication. The set of all n × n matrices with entries in R is a matrix ring denoted Mn(R) (alternative notations: Matn(R) and Rn×n). Some sets of infinite matrices form infinite matrix rings. A subring of a matrix ring is again a matrix ring. Over a rng, one can form matrix rngs.

In mathematics, localization of a category consists of adding to a category inverse morphisms for some collection of morphisms, constraining them to become isomorphisms. This is formally similar to the process of localization of a ring; it in general makes objects isomorphic that were not so before. In homotopy theory, for example, there are many examples of mappings that are invertible up to homotopy; and so large classes of homotopy equivalent spaces. Calculus of fractions is another name for working in a localized category.

In abstract algebra, a module is indecomposable if it is non-zero and cannot be written as a direct sum of two non-zero submodules.

Modular representation theory is a branch of mathematics, and is the part of representation theory that studies linear representations of finite groups over a field K of positive characteristic p, necessarily a prime number. As well as having applications to group theory, modular representations arise naturally in other branches of mathematics, such as algebraic geometry, coding theory, combinatorics and number theory.

In mathematics, and more specifically in abstract algebra, a rng is an algebraic structure satisfying the same properties as a ring, but without assuming the existence of a multiplicative identity. The term rng is meant to suggest that it is a ring without i, that is, without the requirement for an identity element.

In mathematics, a separable algebra is a kind of semisimple algebra. It is a generalization to associative algebras of the notion of a separable field extension.

In category theory, a branch of mathematics, a Krull–Schmidt category is a generalization of categories in which the Krull–Schmidt theorem holds. They arise, for example, in the study of finite-dimensional modules over an algebra.

In mathematics, the Krull–Schmidt theorem states that a group subjected to certain finiteness conditions on chains of subgroups, can be uniquely written as a finite direct product of indecomposable subgroups.

Module theory is the branch of mathematics in which modules are studied. This is a glossary of some terms of the subject.

In ring theory, a Peirce decomposition is a decomposition of an algebra as a sum of eigenspaces of commuting idempotent elements. The Peirce decomposition for associative algebras was introduced by Benjamin Peirce. A similar but more complicated Peirce decomposition for Jordan algebras was introduced by Albert (1947).

In abstract algebra, a decomposition of a module is a way to write a module as a direct sum of modules. A type of a decomposition is often used to define or characterize modules: for example, a semisimple module is a module that has a decomposition into simple modules. Given a ring, the types of decomposition of modules over the ring can also be used to define or characterize the ring: a ring is semisimple if and only if every module over it is a semisimple module.

References