Idempotent matrix

Last updated

In linear algebra, an idempotent matrix is a matrix which, when multiplied by itself, yields itself. [1] [2] That is, the matrix is idempotent if and only if . For this product to be defined, must necessarily be a square matrix. Viewed this way, idempotent matrices are idempotent elements of matrix rings.

Contents

Example

Examples of idempotent matrices are:

Examples of idempotent matrices are:

Real 2 × 2 case

If a matrix is idempotent, then

Thus, a necessary condition for a matrix to be idempotent is that either it is diagonal or its trace equals 1. For idempotent diagonal matrices, and must be either 1 or 0.

If , the matrix will be idempotent provided so a satisfies the quadratic equation

or

which is a circle with center (1/2, 0) and radius 1/2. In terms of an angle θ,

is idempotent.

However, is not a necessary condition: any matrix

with is idempotent.

Properties

Singularity and regularity

The only non-singular idempotent matrix is the identity matrix; that is, if a non-identity matrix is idempotent, its number of independent rows (and columns) is less than its number of rows (and columns).

This can be seen from writing , assuming that A has full rank (is non-singular), and pre-multiplying by to obtain .

When an idempotent matrix is subtracted from the identity matrix, the result is also idempotent. This holds since

If a matrix A is idempotent then for all positive integers n, . This can be shown using proof by induction. Clearly we have the result for , as . Suppose that . Then, , since A is idempotent. Hence by the principle of induction, the result follows.

Eigenvalues

An idempotent matrix is always diagonalizable. [3] Its eigenvalues are either 0 or 1: if is a non-zero eigenvector of some idempotent matrix and its associated eigenvalue, then which implies This further implies that the determinant of an idempotent matrix is always 0 or 1. As stated above, if the determinant is equal to one, the matrix is invertible and is therefore the identity matrix.

Trace

The trace of an idempotent matrix — the sum of the elements on its main diagonal — equals the rank of the matrix and thus is always an integer. This provides an easy way of computing the rank, or alternatively an easy way of determining the trace of a matrix whose elements are not specifically known (which is helpful in statistics, for example, in establishing the degree of bias in using a sample variance as an estimate of a population variance).

Relationships between idempotent matrices

In regression analysis, the matrix is known to produce the residuals from the regression of the vector of dependent variables on the matrix of covariates . (See the section on Applications.) Now, let be a matrix formed from a subset of the columns of , and let . It is easy to show that both and are idempotent, but a somewhat surprising fact is that . This is because , or in other words, the residuals from the regression of the columns of on are 0 since can be perfectly interpolated as it is a subset of (by direct substitution it is also straightforward to show that ). This leads to two other important results: one is that is symmetric and idempotent, and the other is that , i.e., is orthogonal to . These results play a key role, for example, in the derivation of the F test.

Any similar matrices of an idempotent matrix are also idempotent. Idempotency is conserved under a change of basis. This can be shown through multiplication of the transformed matrix with being idempotent: .

Applications

Idempotent matrices arise frequently in regression analysis and econometrics. For example, in ordinary least squares, the regression problem is to choose a vector β of coefficient estimates so as to minimize the sum of squared residuals (mispredictions) ei: in matrix form,

Minimize

where is a vector of dependent variable observations, and is a matrix each of whose columns is a column of observations on one of the independent variables. The resulting estimator is

where superscript T indicates a transpose, and the vector of residuals is [2]

Here both and (the latter being known as the hat matrix) are idempotent and symmetric matrices, a fact which allows simplification when the sum of squared residuals is computed:

The idempotency of plays a role in other calculations as well, such as in determining the variance of the estimator .

An idempotent linear operator is a projection operator on the range space along its null space . is an orthogonal projection operator if and only if it is idempotent and symmetric.

See also

Related Research Articles

In mathematics, and more specifically in linear algebra, a linear map is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism.

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

<span class="mw-page-title-main">Matrix multiplication</span> Mathematical operation in linear algebra

In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices A and B is denoted as AB.

<span class="mw-page-title-main">Symmetric matrix</span> Matrix equal to its transpose

In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally,

Ray transfer matrix analysis is a mathematical form for performing ray tracing calculations in sufficiently simple problems which can be solved considering only paraxial rays. Each optical element is described by a 2×2 ray transfer matrix which operates on a vector describing an incoming light ray to calculate the outgoing ray. Multiplication of the successive matrices thus yields a concise ray transfer matrix describing the entire optical system. The same mathematics is also used in accelerator physics to track particles through the magnet installations of a particle accelerator, see electron optics.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

In mathematics, particularly in linear algebra, a skew-symmetricmatrix is a square matrix whose transpose equals its negative. That is, it satisfies the condition

In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagonal matrix is , while an example of a 3×3 diagonal matrix is. An identity matrix of any size, or any multiple of it is a diagonal matrix called scalar matrix, for example, . In geometry, a diagonal matrix may be used as a scaling matrix, since matrix multiplication with it results in changing scale (size) and possibly also shape; only a scalar matrix results in uniform change in scale.

In linear algebra, an n-by-n square matrix A is called invertible if there exists an n-by-n square matrix B such that

<span class="mw-page-title-main">Four-vector</span> 4-dimensional vector in relativity

In special relativity, a four-vector is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts.

In linear algebra, a QR decomposition, also known as a QR factorization or QU factorization, is a decomposition of a matrix A into a product A = QR of an orthonormal matrix Q and an upper triangular matrix R. QR decomposition is often used to solve the linear least squares (LLS) problem and is the basis for a particular eigenvalue algorithm, the QR algorithm.

An infinitesimal rotation matrix or differential rotation matrix is a matrix representing an infinitely small rotation.

<span class="mw-page-title-main">Projection (linear algebra)</span> Idempotent linear transformation from a vector space to itself

In linear algebra and functional analysis, a projection is a linear transformation from a vector space to itself such that . That is, whenever is applied twice to any vector, it gives the same result as if it were applied once. It leaves its image unchanged. This definition of "projection" formalizes and generalizes the idea of graphical projection. One can also consider the effect of a projection on a geometrical object by examining the effect of the projection on points in the object.

In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix. It is a specialization of the tensor product from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis. The Kronecker product is to be distinguished from the usual matrix multiplication, which is an entirely different operation. The Kronecker product is also sometimes called matrix direct product.

In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable in the input dataset and the output of the (linear) function of the independent variable.

In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices. It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities. This greatly simplifies operations such as finding the maximum or minimum of a multivariate function and solving systems of differential equations. The notation used here is commonly used in statistics and engineering, while the tensor index notation is preferred in physics.

In mathematics, a moment matrix is a special symmetric square matrix whose rows and columns are indexed by monomials. The entries of the matrix depend on the product of the indexing monomials only

In statistics, Bayesian multivariate linear regression is a Bayesian approach to multivariate linear regression, i.e. linear regression where the predicted outcome is a vector of correlated random variables rather than a single scalar random variable. A more general treatment of this approach can be found in the article MMSE estimator.

In statistics, the projection matrix, sometimes also called the influence matrix or hat matrix, maps the vector of response values to the vector of fitted values. It describes the influence each response value has on each fitted value. The diagonal elements of the projection matrix are the leverages, which describe the influence each response value has on the fitted value for that same observation.

In mathematics, the Khatri–Rao product or block Kronecker product of two partitioned matrices and is defined as

References

  1. Chiang, Alpha C. (1984). Fundamental Methods of Mathematical Economics (3rd ed.). New York: McGraw–Hill. p.  80. ISBN   0070108137.
  2. 1 2 Greene, William H. (2003). Econometric Analysis (5th ed.). Upper Saddle River, NJ: Prentice–Hall. pp. 808–809. ISBN   0130661899.
  3. Horn, Roger A.; Johnson, Charles R. (1990). Matrix analysis. Cambridge University Press. p.  p. 148. ISBN   0521386322.