This article needs additional citations for verification . (January 2021) (Learn how and when to remove this template message) |
A fuzzy associative matrix expresses fuzzy logic rules in tabular form. These rules usually take two variables as input, mapping cleanly to a two-dimensional matrix, although theoretically a matrix of any number of dimensions is possible. From the perspective of neuro-fuzzy systems, the mathematical matrix is called a "Fuzzy associative memory" because it stores the weights of the perceptron. [1]
In the context of game AI programming, a fuzzy associative matrix helps to develop the rules for non-player characters. [2] Suppose a professional is tasked with writing fuzzy logic rules for a video game monster. In the game being built, entities have two variables: hit points (HP) and firepower (FP):
HP/FP | Very low HP | Low HP | Medium HP | High HP | Very high HP |
---|---|---|---|---|---|
Very weak FP | Retreat! | Retreat! | Defend | Defend | Defend |
Weak FP | Retreat! | Defend | Defend | Attack | Attack |
Medium FP | Retreat! | Defend | Attack | Attack | Full attack! |
High FP | Retreat! | Defend | Attack | Attack | Full attack! |
Very high FP | Defend | Attack | Attack | Full attack! | Full attack! |
This translates to:
IF MonsterHP IS VeryLowHP AND MonsterFP IS VeryWeakFP THEN Retreat IF MonsterHP IS LowHP AND MonsterFP IS VeryWeakFP THEN Retreat IF MonsterHP IS MediumHP AND MonsterFP is VeryWeakFP THEN Defend
Multiple rules can fire at once, and often will, because the distinction between "very low" and "low" is fuzzy. If it is more "very low" than it is low, then the "very low" rule will generate a stronger response. The program will evaluate all the rules that fire and use an appropriate defuzzification method to generate its actual response.
An implementation of this system might use either the matrix or the explicit IF/THEN form. The matrix makes it easy to visualize the system, but it also makes it impossible to add a third variable just for one rule, so it is less flexible.
There is no inherent pattern in the matrix. It appears as if the rules were just made up, and indeed they were. This is both a strength and a weakness of fuzzy logic in general. It is often impractical or impossible to find an exact set of rules or formulae for dealing with a specific situation. For a sufficiently complex game, a mathematician would not be able to study the system and figure out a mathematically accurate set of rules. However, this weakness is intrinsic to the realities of the situation, not of fuzzy logic itself. The strength of the system is that even if one of the rules is wrong, even greatly wrong, other rules that are correct are likely to fire as well and they may compensate for the error.
This does not mean a fuzzy system should be sloppy. Depending on the system, it might get away with being sloppy, but it will underperform. While the rules are fairly arbitrary, they should be chosen carefully. If possible, an expert should decide on the rules, and the sets and rules should be tested vigorously and refined as needed. In this way, a fuzzy system is like an expert system. (Fuzzy logic is used in many true expert systems, as well.)
In artificial intelligence, an expert system is a computer system emulating the decision-making ability of a human expert. Expert systems are designed to solve complex problems by reasoning through bodies of knowledge, represented mainly as if–then rules rather than through conventional procedural code. The first expert systems were created in the 1970s and then proliferated in the 1980s. Expert systems were among the first truly successful forms of artificial intelligence (AI) software. An expert system is divided into two subsystems: the inference engine and the knowledge base. The knowledge base represents facts and rules. The inference engine applies the rules to the known facts to deduce new facts. Inference engines can also include explanation and debugging abilities.
Knowledge representation and reasoning is the field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can utilize to solve complex tasks such as diagnosing a medical condition or having a dialog in a natural language. Knowledge representation incorporates findings from psychology about how humans solve problems and represent knowledge in order to design formalisms that will make complex systems easier to design and build. Knowledge representation and reasoning also incorporates findings from logic to automate various kinds of reasoning, such as the application of rules or the relations of sets and subsets.
A fuzzy control system is a control system based on fuzzy logic—a mathematical system that analyzes analog input values in terms of logical variables that take on continuous values between 0 and 1, in contrast to classical or digital logic, which operates on discrete values of either 1 or 0.
In fuzzy mathematics, fuzzy logic is a form of many-valued logic in which the truth values of variables may be any real number between 0 and 1 both inclusive. It is employed to handle the concept of partial truth, where the truth value may range between completely true and completely false. By contrast, in Boolean logic, the truth values of variables may only be the integer values 0 or 1.
Machine learning (ML) is the study of computer algorithms that improve automatically through experience. It is seen as a part of artificial intelligence. Machine learning algorithms build a model based on sample data, known as "training data", in order to make predictions or decisions without being explicitly programmed to do so. Machine learning algorithms are used in a wide variety of applications, such as email filtering and computer vision, where it is difficult or unfeasible to develop conventional algorithms to perform the needed tasks.
A control system manages, commands, directs, or regulates the behavior of other devices or systems using control loops. It can range from a single home heating controller using a thermostat controlling a domestic boiler to large industrial control systems which are used for controlling processes or machines.
Symbolic artificial intelligence is the term for the collection of all methods in artificial intelligence research that are based on high-level "symbolic" (human-readable) representations of problems, logic and search. Symbolic AI was the dominant paradigm of AI research from the mid-1950s until the late 1980s.
Intelligent control is a class of control techniques that use various artificial intelligence computing approaches like neural networks, Bayesian probability, fuzzy logic, machine learning, reinforcement learning, evolutionary computation and genetic algorithms.
Fuzzy Control Language, or FCL, is a language for implementing fuzzy logic, especially fuzzy control. It was standardized by IEC 61131-7. It is a domain-specific programming language: it has no features unrelated to fuzzy logic, so it is impossible to even print "Hello, world!". Therefore, one does not write a program in FCL, but one may write part of it in FCL.
The Combs method is a rule base reduction method of writing fuzzy logic rules described by William E. Combs in 1997. It is designed to prevent combinatorial explosion in fuzzy logic rules.
The expression computational intelligence (CI) usually refers to the ability of a computer to learn a specific task from data or experimental observation. Even though it is commonly considered a synonym of soft computing, there is still no commonly accepted definition of computational intelligence.
In the history of artificial intelligence, an AI winter is a period of reduced funding and interest in artificial intelligence research. The term was coined by analogy to the idea of a nuclear winter. The field has experienced several hype cycles, followed by disappointment and criticism, followed by funding cuts, followed by renewed interest years or decades later.
The following outline is provided as an overview of and topical guide to artificial intelligence:
Type-2 fuzzy sets and systems generalize standard Type-1 fuzzy sets and systems so that more uncertainty can be handled. From the beginning of fuzzy sets, criticism was made about the fact that the membership function of a type-1 fuzzy set has no uncertainty associated with it, something that seems to contradict the word fuzzy, since that word has the connotation of much uncertainty. So, what does one do when there is uncertainty about the value of the membership function? The answer to this question was provided in 1975 by the inventor of fuzzy sets, Lotfi A. Zadeh, when he proposed more sophisticated kinds of fuzzy sets, the first of which he called a "type-2 fuzzy set". A type-2 fuzzy set lets us incorporate uncertainty about the membership function into fuzzy set theory, and is a way to address the above criticism of type-1 fuzzy sets head-on. And, if there is no uncertainty, then a type-2 fuzzy set reduces to a type-1 fuzzy set, which is analogous to probability reducing to determinism when unpredictability vanishes.
This glossary of artificial intelligence is a list of definitions of terms and concepts relevant to the study of artificial intelligence, its sub-disciplines, and related fields. Related glossaries include Glossary of computer science, Glossary of robotics, and Glossary of machine vision.
The Mivar-based approach is a mathematical tool for designing artificial intelligence (AI) systems. Mivar was developed by combining production and Petri nets. The Mivar-based approach was developed for semantic analysis and adequate representation of humanitarian epistemological and axiological principles in the process of developing artificial intelligence. The Mivar-based approach incorporates computer science, informatics and discrete mathematics, databases, expert systems, graph theory, matrices and inference systems. The Mivar-based approach involves two technologies:
The following outline is provided as an overview of and topical guide to machine learning. Machine learning is a subfield of soft computing within computer science that evolved from the study of pattern recognition and computational learning theory in artificial intelligence. In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". Machine learning explores the study and construction of algorithms that can learn from and make predictions on data. Such algorithms operate by building a model from an example training set of input observations in order to make data-driven predictions or decisions expressed as outputs, rather than following strictly static program instructions.
This article discusses computational tools used in artificial intelligence.