Householder transformation

Last updated

In linear algebra, a Householder transformation (also known as a Householder reflection or elementary reflector) is a linear transformation that describes a reflection about a plane or hyperplane containing the origin. The Householder transformation was used in a 1958 paper by Alston Scott Householder. [1]

Contents

Its analogue over general inner product spaces is the Householder operator.

Definition

Transformation

The reflection hyperplane can be defined by its normal vector, a unit vector (a vector with length ) that is orthogonal to the hyperplane. The reflection of a point about this hyperplane is the linear transformation:

where is given as a column unit vector with conjugate transpose .

The Householder transformation acting as a reflection of
x
{\displaystyle x}
about the hyperplane defined by
v
{\displaystyle v}
. Householdertransformation.png
The Householder transformation acting as a reflection of about the hyperplane defined by .

Householder matrix

The matrix constructed from this transformation can be expressed in terms of an outer product as:

is known as the Householder matrix, where is the identity matrix.

Properties

The Householder matrix has the following properties:

  • it is Hermitian: ,
  • it is unitary: (via the Sherman-Morrison formula),
  • hence it is involutory: .
  • A Householder matrix has eigenvalues . To see this, notice that if is orthogonal to the vector which was used to create the reflector, then , i.e., is an eigenvalue of multiplicity , since there are independent vectors orthogonal to . Also, notice (since is by definition a unit vector), and so is an eigenvalue with multiplicity .
  • The determinant of a Householder reflector is , since the determinant of a matrix is the product of its eigenvalues, in this case one of which is with the remainder being (as in the previous point), or via the Matrix determinant lemma.

Applications

Geometric optics

In geometric optics, specular reflection can be expressed in terms of the Householder matrix (see Specular reflection § Vector formulation ).

Numerical linear algebra

Householder transformations are widely used in numerical linear algebra, for example, to annihilate the entries below the main diagonal of a matrix, [2] to perform QR decompositions and in the first step of the QR algorithm. They are also widely used for transforming to a Hessenberg form. For symmetric or Hermitian matrices, the symmetry can be preserved, resulting in tridiagonalization. [3]

QR decomposition

Householder transformations can be used to calculate a QR decomposition. Consider a matrix tridiangularized up to column , then our goal is to construct such Householder matrices that act upon the principal submatrices of a given matrix

via the matrix

.

(note that we already established before that Householder transformations are unitary matrices, and since the multiplication of unitary matrices is itself a unitary matrix, this gives us the unitary matrix of the QR decomposition)

If we can find a so that

we could accomplish this. Thinking geometrically speaking, we are looking for a plane so that the reflection of about the plane happens to land directly on the basis vector. In other words,

for some constant . However, this also shows that

.

And since is a unit vector, this means that

Now if we apply equation ( 2 ) back into equation ( 1 ).

Or, in other words, by comparing the scalars in front of the vector we must have

.

Or

Which means that we can solve for as

This completes the construction; however, in practice we want to avoid catastrophic cancellation in equation ( 2 ). To do so, we choose the sign of so that

[4]

Tridiagonalization

This procedure is presented in Numerical Analysis by Burden and Faires, and works when the matrix is symmetric. In the non-symmetric case, it is still useful as a similar procedure can result in a Hessenberg matrix.

It uses a slightly altered function with . [5] In the first step, to form the Householder matrix in each step we need to determine and , which are:

From and , construct vector :

where , , and

for each

Then compute:

Having found and computed the process is repeated for as follows:

Continuing in this manner, the tridiagonal and symmetric matrix is formed.

Examples

In this example, also from Burden and Faires, [5] the given matrix is transformed to the similar tridiagonal matrix A3 by using the Householder method.

Following those steps in the Householder method, we have:

The first Householder matrix:

Used to form

As we can see, the final result is a tridiagonal symmetric matrix which is similar to the original one. The process is finished after two steps.

Quantum Computation

Picture showing the geometric interpretation of the first iteration of Grover's algorithm. The state vector
|
s
> 
{\displaystyle |s\rangle }
is rotated towards the target vector
|
o
> 
{\displaystyle |\omega \rangle }
as shown. Grovers algorithm geometry.png
Picture showing the geometric interpretation of the first iteration of Grover's algorithm. The state vector is rotated towards the target vector as shown.

As unitary matrices are useful in quantum computation, and Householder transformations are unitary, they are very useful in quantum computing. One of the central algorithms where they're useful is Grover's algorithm, where we are trying to solve for a representation of an oracle function represented by what turns out to be a Householder transformation:

(here the is part of the Bra-ket notation and is analogous to which we were using previously)

This is done via an algorithm that iterates via the oracle function and another operator known as the Grover diffusion operator defined by

and .

Computational and theoretical relationship to other unitary transformations

The Householder transformation is a reflection about a hyperplane with unit normal vector , as stated earlier. An -by- unitary transformation satisfies . Taking the determinant (-th power of the geometric mean) and trace (proportional to arithmetic mean) of a unitary matrix reveals that its eigenvalues have unit modulus. This can be seen directly and swiftly:

Since arithmetic and geometric means are equal if the variables are constant (see inequality of arithmetic and geometric means), we establish the claim of unit modulus.

For the case of real valued unitary matrices we obtain orthogonal matrices, . It follows rather readily (see orthogonal matrix) that any orthogonal matrix can be decomposed into a product of 2 by 2 rotations, called Givens Rotations, and Householder reflections. This is appealing intuitively since multiplication of a vector by an orthogonal matrix preserves the length of that vector, and rotations and reflections exhaust the set of (real valued) geometric operations that render invariant a vector's length.

The Householder transformation was shown to have a one-to-one relationship with the canonical coset decomposition of unitary matrices defined in group theory, which can be used to parametrize unitary operators in a very efficient manner. [6]

Finally we note that a single Householder transform, unlike a solitary Givens transform, can act on all columns of a matrix, and as such exhibits the lowest computational cost for QR decomposition and tridiagonalization. The penalty for this "computational optimality" is, of course, that Householder operations cannot be as deeply or efficiently parallelized. As such Householder is preferred for dense matrices on sequential machines, whilst Givens is preferred on sparse matrices, and/or parallel machines.

See also

Notes

  1. Householder, A. S. (1958). "Unitary Triangularization of a Nonsymmetric Matrix" (PDF). Journal of the ACM . 5 (4): 339–342. doi:10.1145/320941.320947. MR   0111128. S2CID   9858625.
  2. Taboga, Marco. "Householder matrix, Lectures on matrix algebra".
  3. Schabauer, Hannes; Pacher, Christoph; Sunderland, Andrew G.; Gansterer, Wilfried N. (2010-05-01). "Toward a parallel solver for generalized complex symmetric eigenvalue problems". Procedia Computer Science. 1 (1): 437–445. doi: 10.1016/j.procs.2010.04.047 .
  4. Saad, Yousef (2003). Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics. pp. 11–12.
  5. 1 2 Burden, Richard; Faires, Douglas; Burden, Annette (2016). Numerical analysis (10th ed.). Thomson Brooks/Cole. ISBN   9781305253667.
  6. Renan Cabrera; Traci Strohecker; Herschel Rabitz (2010). "The canonical coset decomposition of unitary matrices through Householder transformations". Journal of Mathematical Physics . 51 (8): 082101. arXiv: 1008.2477 . Bibcode:2010JMP....51h2101C. doi:10.1063/1.3466798. S2CID   119641896.

Related Research Articles

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector where is the row vector transpose of More generally, a Hermitian matrix is positive-definite if the real number is positive for every nonzero complex column vector where denotes the conjugate transpose of

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

In mathematics, particularly in linear algebra, a skew-symmetricmatrix is a square matrix whose transpose equals its negative. That is, it satisfies the condition

Unit quaternions, known as versors, provide a convenient mathematical notation for representing spatial orientations and rotations of elements in three dimensional space. Specifically, they encode information about an axis-angle rotation about an arbitrary axis. Rotation and orientation quaternions have applications in computer graphics, computer vision, robotics, navigation, molecular dynamics, flight dynamics, orbital mechanics of satellites, and crystallographic texture analysis.

In the mathematical field of differential geometry, a metric tensor is an additional structure on a manifold M that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there. More precisely, a metric tensor at a point p of M is a bilinear form defined on the tangent space at p, and a metric field on M consists of a metric tensor at each point p of M that varies smoothly with p.

<span class="mw-page-title-main">Exterior algebra</span> Algebra associated to any vector space

In mathematics, the exterior algebra or Grassmann algebra of a vector space is an associative algebra that contains which has a product, called exterior product or wedge product and denoted with , such that for every vector in The exterior algebra is named after Hermann Grassmann, and the names of the product come from the "wedge" symbol and the fact that the product of two elements of is "outside"

<span class="mw-page-title-main">Lorentz group</span> Lie group of Lorentz transformations

In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz.

In linear algebra, a square matrix  is called diagonalizable or non-defective if it is similar to a diagonal matrix. That is, if there exists an invertible matrix  and a diagonal matrix such that . This is equivalent to . This property exists for any linear map: for a finite-dimensional vector space , a linear map  is called diagonalizable if there exists an ordered basis of  consisting of eigenvectors of . These definitions are equivalent: if  has a matrix representation as above, then the column vectors of  form a basis consisting of eigenvectors of , and the diagonal entries of  are the corresponding eigenvalues of ; with respect to this eigenvector basis,  is represented by .

In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain combination of two Weyl spinors, specifically, a bispinor that transforms "spinorially" under the action of the Lorentz group.

In linear algebra, a QR decomposition, also known as a QR factorization or QU factorization, is a decomposition of a matrix A into a product A = QR of an orthonormal matrix Q and an upper triangular matrix R. QR decomposition is often used to solve the linear least squares (LLS) problem and is the basis for a particular eigenvalue algorithm, the QR algorithm.

<span class="mw-page-title-main">Projection (linear algebra)</span> Idempotent linear transformation from a vector space to itself

In linear algebra and functional analysis, a projection is a linear transformation from a vector space to itself such that . That is, whenever is applied twice to any vector, it gives the same result as if it were applied once. It leaves its image unchanged. This definition of "projection" formalizes and generalizes the idea of graphical projection. One can also consider the effect of a projection on a geometrical object by examining the effect of the projection on points in the object.

<span class="mw-page-title-main">Bloch sphere</span> Geometrical representation of the pure state space of a two-level quantum mechanical system

In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.

In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix

<span class="mw-page-title-main">Quantum logic gate</span> Basic circuit in quantum computing

In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate is a basic quantum circuit operating on a small number of qubits. Quantum logic gates are the building blocks of quantum circuits, like classical logic gates are for conventional digital circuits.

In the field of mathematics, norms are defined for elements within a vector space. Specifically, when the vector space comprises matrices, such norms are referred to as matrix norms. Matrix norms differ from vector norms in that they must also interact with matrix multiplication.

In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another, except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value. A tensor density with a single index is called a vector density. A distinction is made among (authentic) tensor densities, pseudotensor densities, even tensor densities and odd tensor densities. Sometimes tensor densities with a negative weight W are called tensor capacity. A tensor density can also be regarded as a section of the tensor product of a tensor bundle with a density bundle.

In linear algebra, the Schmidt decomposition refers to a particular way of expressing a vector in the tensor product of two inner product spaces. It has numerous applications in quantum information theory, for example in entanglement characterization and in state purification, and plasticity.

In quantum computing, quantum finite automata (QFA) or quantum state machines are a quantum analog of probabilistic automata or a Markov decision process. They provide a mathematical abstraction of real-world quantum computers. Several types of automata may be defined, including measure-once and measure-many automata. Quantum finite automata can also be understood as the quantization of subshifts of finite type, or as a quantization of Markov chains. QFAs are, in turn, special cases of geometric finite automata or topological finite automata.

In the mathematical field of linear algebra and convex analysis, the numerical range or field of values of a complex matrix A is the set

References