In numerical linear algebra, the QR algorithm or QR iteration is an eigenvalue algorithm: that is, a procedure to calculate the eigenvalues and eigenvectors of a matrix. The QR algorithm was developed in the late 1950s by John G. F. Francis and by Vera N. Kublanovskaya, working independently. [1] [2] [3] The basic idea is to perform a QR decomposition, writing the matrix as a product of an orthogonal matrix and an upper triangular matrix, multiply the factors in the reverse order, and iterate.
Formally, let A be a real matrix of which we want to compute the eigenvalues, and let A0 := A. At the k-th step (starting with k = 0), we compute the QR decomposition Ak = Qk Rk where Qk is an orthogonal matrix (i.e., QT = Q−1) and Rk is an upper triangular matrix. We then form Ak+1 = Rk Qk. Note that so all the Ak are similar and hence they have the same eigenvalues. The algorithm is numerically stable because it proceeds by orthogonal similarity transforms.
Under certain conditions, [4] the matrices Ak converge to a triangular matrix, the Schur form of A. The eigenvalues of a triangular matrix are listed on the diagonal, and the eigenvalue problem is solved. In testing for convergence it is impractical to require exact zeros,[ citation needed ] but the Gershgorin circle theorem provides a bound on the error.
In the above crude form the iterations are relatively expensive. This can be mitigated by first bringing the matrix A to upper Hessenberg form (which costs arithmetic operations using a technique based on Householder reduction), with a finite sequence of orthogonal similarity transforms, somewhat like a two-sided QR decomposition. [5] [6] (For QR decomposition, the Householder reflectors are multiplied only on the left, but for the Hessenberg case they are multiplied on both left and right.) Determining the QR decomposition of an upper Hessenberg matrix costs arithmetic operations. Moreover, because the Hessenberg form is already nearly upper-triangular (it has just one nonzero entry below each diagonal), using it as a starting point reduces the number of steps required for convergence of the QR algorithm.
If the original matrix is symmetric, then the upper Hessenberg matrix is also symmetric and thus tridiagonal, and so are all the Ak. In this case reaching Hessenberg form costs arithmetic operations using a technique based on Householder reduction. [5] [6] Determining the QR decomposition of a symmetric tridiagonal matrix costs operations. [7]
If a Hessenberg matrix has element for some , i.e., if one of the elements just below the diagonal is in fact zero, then it decomposes into blocks whose eigenproblems may be solved separately; an eigenvalue is either an eigenvalue of the submatrix of the first rows and columns, or an eigenvalue of the submatrix of remaining rows and columns. The purpose of the QR iteration step is to shrink one of these elements so that effectively a small block along the diagonal is split off from the bulk of the matrix. In the case of a real eigenvalue that is usually the block in the lower right corner (in which case element holds that eigenvalue), whereas in the case of a pair of conjugate complex eigenvalues it is the block in the lower right corner.
The rate of convergence depends on the separation between eigenvalues, so a practical algorithm will use shifts, either explicit or implicit, to increase separation and accelerate convergence. A typical symmetric QR algorithm isolates each eigenvalue (then reduces the size of the matrix) with only one or two iterations, making it efficient as well as robust.[ clarification needed ]
The basic QR algorithm can be visualized in the case where A is a positive-definite symmetric matrix. In that case, A can be depicted as an ellipse in 2 dimensions or an ellipsoid in higher dimensions. The relationship between the input to the algorithm and a single iteration can then be depicted as in Figure 1 (click to see an animation). Note that the LR algorithm is depicted alongside the QR algorithm.
A single iteration causes the ellipse to tilt or "fall" towards the x-axis. In the event where the large semi-axis of the ellipse is parallel to the x-axis, one iteration of QR does nothing. Another situation where the algorithm "does nothing" is when the large semi-axis is parallel to the y-axis instead of the x-axis. In that event, the ellipse can be thought of as balancing precariously without being able to fall in either direction. In both situations, the matrix is diagonal. A situation where an iteration of the algorithm "does nothing" is called a fixed point. The strategy employed by the algorithm is iteration towards a fixed-point. Observe that one fixed point is stable while the other is unstable. If the ellipse were tilted away from the unstable fixed point by a very small amount, one iteration of QR would cause the ellipse to tilt away from the fixed point instead of towards. Eventually though, the algorithm would converge to a different fixed point, but it would take a long time.
It's worth pointing out that finding even a single eigenvector of a symmetric matrix is not computable (in exact real arithmetic according to the definitions in computable analysis). [8] This difficulty exists whenever the multiplicities of a matrix's eigenvalues are not knowable. On the other hand, the same problem does not exist for finding eigenvalues. The eigenvalues of a matrix are always computable.
We will now discuss how these difficulties manifest in the basic QR algorithm. This is illustrated in Figure 2. Recall that the ellipses represent positive-definite symmetric matrices. As the two eigenvalues of the input matrix approach each other, the input ellipse changes into a circle. A circle corresponds to a multiple of the identity matrix. A near-circle corresponds to a near-multiple of the identity matrix whose eigenvalues are nearly equal to the diagonal entries of the matrix. Therefore, the problem of approximately finding the eigenvalues is shown to be easy in that case. But notice what happens to the semi-axes of the ellipses. An iteration of QR (or LR) tilts the semi-axes less and less as the input ellipse gets closer to being a circle. The eigenvectors can only be known when the semi-axes are parallel to the x-axis and y-axis. The number of iterations needed to achieve near-parallelism increases without bound as the input ellipse becomes more circular.
While it may be impossible to compute the eigendecomposition of an arbitrary symmetric matrix, it is always possible to perturb the matrix by an arbitrarily small amount and compute the eigendecomposition of the resulting matrix. In the case when the matrix is depicted as a near-circle, the matrix can be replaced with one whose depiction is a perfect circle. In that case, the matrix is a multiple of the identity matrix, and its eigendecomposition is immediate. Be aware though that the resulting eigenbasis can be quite far from the original eigenbasis.
The slowdown when the ellipse gets more circular has a converse: It turns out that when the ellipse gets more stretched - and less circular - then the rotation of the ellipse becomes faster. Such a stretch can be induced when the matrix which the ellipse represents gets replaced with where is approximately the smallest eigenvalue of . In this case, the ratio of the two semi-axes of the ellipse approaches . In higher dimensions, shifting like this makes the length of the smallest semi-axis of an ellipsoid small relative to the other semi-axes, which speeds up convergence to the smallest eigenvalue, but does not speed up convergence to the other eigenvalues. This becomes useless when the smallest eigenvalue is fully determined, so the matrix must then be deflated, which simply means removing its last row and column.
The issue with the unstable fixed point also needs to be addressed. The shifting heuristic is often designed to deal with this problem as well: Practical shifts are often discontinuous and randomised. Wilkinson's shift—which is well-suited for symmetric matrices like the ones we're visualising—is in particular discontinuous.
In modern computational practice, the QR algorithm is performed in an implicit version which makes the use of multiple shifts easier to introduce. [4] The matrix is first brought to upper Hessenberg form as in the explicit version; then, at each step, the first column of is transformed via a small-size Householder similarity transformation to the first column of [ clarification needed ] (or ), where , of degree , is the polynomial that defines the shifting strategy (often , where and are the two eigenvalues of the trailing principal submatrix of , the so-called implicit double-shift). Then successive Householder transformations of size are performed in order to return the working matrix to upper Hessenberg form. This operation is known as bulge chasing, due to the peculiar shape of the non-zero entries of the matrix along the steps of the algorithm. As in the first version, deflation is performed as soon as one of the sub-diagonal entries of is sufficiently small.
Since in the modern implicit version of the procedure no QR decompositions are explicitly performed, some authors, for instance Watkins, [9] suggested changing its name to Francis algorithm. Golub and Van Loan use the term Francis QR step.
The QR algorithm can be seen as a more sophisticated variation of the basic "power" eigenvalue algorithm. Recall that the power algorithm repeatedly multiplies A times a single vector, normalizing after each iteration. The vector converges to an eigenvector of the largest eigenvalue. Instead, the QR algorithm works with a complete basis of vectors, using QR decomposition to renormalize (and orthogonalize). For a symmetric matrix A, upon convergence, AQ = QΛ, where Λ is the diagonal matrix of eigenvalues to which A converged, and where Q is a composite of all the orthogonal similarity transforms required to get there. Thus the columns of Q are the eigenvectors.
The QR algorithm was preceded by the LR algorithm, which uses the LU decomposition instead of the QR decomposition. The QR algorithm is more stable, so the LR algorithm is rarely used nowadays. However, it represents an important step in the development of the QR algorithm.
The LR algorithm was developed in the early 1950s by Heinz Rutishauser, who worked at that time as a research assistant of Eduard Stiefel at ETH Zurich. Stiefel suggested that Rutishauser use the sequence of moments y0TAkx0, k = 0, 1, ... (where x0 and y0 are arbitrary vectors) to find the eigenvalues of A. Rutishauser took an algorithm of Alexander Aitken for this task and developed it into the quotient–difference algorithm or qd algorithm. After arranging the computation in a suitable shape, he discovered that the qd algorithm is in fact the iteration Ak = LkUk (LU decomposition), Ak+1 = UkLk, applied on a tridiagonal matrix, from which the LR algorithm follows. [10]
One variant of the QR algorithm, the Golub-Kahan-Reinsch algorithm starts with reducing a general matrix into a bidiagonal one. [11] This variant of the QR algorithm for the computation of singular values was first described by Golub & Kahan (1965). The LAPACK subroutine DBDSQR implements this iterative method, with some modifications to cover the case where the singular values are very small ( Demmel & Kahan 1990 ). Together with a first step using Householder reflections and, if appropriate, QR decomposition, this forms the DGESVD routine for the computation of the singular value decomposition. The QR algorithm can also be implemented in infinite dimensions with corresponding convergence results. [12] [13]
In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors.
In linear algebra, the singular value decomposition (SVD) is a factorization of a real or complex matrix into a rotation, followed by a rescaling followed by another rotation. It generalizes the eigendecomposition of a square normal matrix with an orthonormal eigenbasis to any matrix. It is related to the polar decomposition.
In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.
In the mathematical discipline of linear algebra, the Schur decomposition or Schur triangulation, named after Issai Schur, is a matrix decomposition. It allows one to write an arbitrary complex square matrix as unitarily similar to an upper triangular matrix whose diagonal elements are the eigenvalues of the original matrix.
In linear algebra, a Householder transformation is a linear transformation that describes a reflection about a plane or hyperplane containing the origin. The Householder transformation was used in a 1958 paper by Alston Scott Householder.
In numerical analysis, one of the most important problems is designing efficient and stable algorithms for finding the eigenvalues of a matrix. These eigenvalue algorithms may also find eigenvectors.
In linear algebra, a Hessenberg matrix is a special kind of square matrix, one that is "almost" triangular. To be exact, an upper Hessenberg matrix has zero entries below the first subdiagonal, and a lower Hessenberg matrix has zero entries above the first superdiagonal. They are named after Karl Hessenberg.
In linear algebra, a tridiagonal matrix is a band matrix that has nonzero elements only on the main diagonal, the subdiagonal/lower diagonal, and the supradiagonal/upper diagonal. For example, the following matrix is tridiagonal:
In numerical analysis, inverse iteration is an iterative eigenvalue algorithm. It allows one to find an approximate eigenvector when an approximation to a corresponding eigenvalue is already known. The method is conceptually similar to the power method. It appears to have originally been developed to compute resonance frequencies in the field of structural mechanics.
Divide-and-conquer eigenvalue algorithms are a class of eigenvalue algorithms for Hermitian or real symmetric matrices that have recently become competitive in terms of stability and efficiency with more traditional algorithms such as the QR algorithm. The basic concept behind these algorithms is the divide-and-conquer approach from computer science. An eigenvalue problem is divided into two problems of roughly half the size, each of these are solved recursively, and the eigenvalues of the original problem are computed from the results of these smaller problems.
In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method. Arnoldi finds an approximation to the eigenvalues and eigenvectors of general matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.
In linear algebra, an eigenvector or characteristic vector is a vector that has its direction unchanged by a given linear transformation. More precisely, an eigenvector, , of a linear transformation, , is scaled by a constant factor, , when the linear transformation is applied to it: . The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor .
The Lanczos algorithm is an iterative method devised by Cornelius Lanczos that is an adaptation of power methods to find the "most useful" eigenvalues and eigenvectors of an Hermitian matrix, where is often but not necessarily much smaller than . Although computationally efficient in principle, the method as initially formulated was not useful, due to its numerical instability.
In mathematics, the square root of a matrix extends the notion of square root from numbers to matrices. A matrix B is said to be a square root of A if the matrix product BB is equal to A.
In mathematics, power iteration is an eigenvalue algorithm: given a diagonalizable matrix , the algorithm will produce a number , which is the greatest eigenvalue of , and a nonzero vector , which is a corresponding eigenvector of , that is, . The algorithm is also known as the Von Mises iteration.
Numerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of. Numerical linear algebra uses properties of vectors and matrices to develop computer algorithms that minimize the error introduced by the computer, and is also concerned with ensuring that the algorithm is as efficient as possible.
In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the decomposition is called "spectral decomposition", derived from the spectral theorem.
In the mathematical field of linear algebra, an arrowhead matrix is a square matrix containing zeros in all entries except for the first row, first column, and main diagonal, these entries can be any number. In other words, the matrix has the form
Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) is a matrix-free method for finding the largest eigenvalues and the corresponding eigenvectors of a symmetric generalized eigenvalue problem
In numerical linear algebra, the Bartels–Stewart algorithm is used to numerically solve the Sylvester matrix equation . Developed by R.H. Bartels and G.W. Stewart in 1971, it was the first numerically stable method that could be systematically applied to solve such equations. The algorithm works by using the real Schur decompositions of and to transform into a triangular system that can then be solved using forward or backward substitution. In 1979, G. Golub, C. Van Loan and S. Nash introduced an improved version of the algorithm, known as the Hessenberg–Schur algorithm. It remains a standard approach for solving Sylvester equations when is of small to moderate size.