In numerical linear algebra, a Givens rotation is a rotation in the plane spanned by two coordinates axes. Givens rotations are named after Wallace Givens, who introduced them to numerical analysts in the 1950s while he was working at Argonne National Laboratory.
A Givens rotation acting on a matrix from the left is a row operation, moving data between rows but always within the same column. Unlike the elementary operation of row-addition, a Givens rotation changes both of the rows addressed by it. To understand how it is a rotation, one may denote the elements of one target row by through and the elements of the other target row by through : Then the effect of a Givens rotation is to rotate each subvector by the same angle. As with row-addition, algorithms often choose this angle so that one specific element becomes zero, and whatever happens in remaining columns is considered acceptable side-effects.
A Givens rotation acting on a matrix from the right is instead a column operation, moving data between two columns but always within the same row. As with action from the left, it rotates each subvector by the same angle, but here these named elements occur in the matrix as Some algorithms, especially those concerned with preserving matrix similarity, apply Givens rotations as a conjugate action: both rotating by one angle between two rows, and rotating by the same angle between the corresponding columns. In this case the effect on the four elements affected by both rotations is more complicated; a Jacobi rotation is such a conjugate action to the end of zeroing the two off-diagonal elements among these four.
The main use of Givens rotations in numerical linear algebra is to transform vectors or matrices into a special form with zeros in certain coefficients. This effect can, for example, be employed for computing the QR decomposition of a matrix. One advantage over Householder transformations is that they can easily be parallelised, and another is that often for very sparse matrices they have a lower operation count.
A Givens rotation is represented by a matrix of the form
where c = cos θ and s = sin θ appear at the intersections ith and jth rows and columns. That is, for fixed i>j, the non-zero elements of Givens matrix are given by:
The product G(i, j, θ)x represents a counterclockwise rotation of the vector x in the (i, j) plane of θ radians, hence the name Givens rotation.
When a Givens rotation matrix, G(i, j, θ), multiplies another matrix, A, from the left, G A, only rows i and j of A are affected. Thus we restrict attention to the following counterclockwise problem. Given a and b, find c = cos θ and s = sin θ such that
where is the length of the vector . Explicit calculation of θ is rarely necessary or desirable. Instead we directly seek c and s. An obvious solution would be
However, the computation for r may overflow or underflow. An alternative formulation avoiding this problem ( Golub & Van Loan 1996 , §5.1.8) is implemented as the hypot function in many programming languages.
The following Fortran code is a minimalistic implementation of Givens rotation for real numbers. If the input values 'a' or 'b' are frequently zero, the code may be optimized to handle these cases as presented here.
subroutine givens_rotation(a,b,c,s,r)real a,b,c,s,rreal h,dif(b.ne.0.0)thenh=hypot(a,b)d=1.0/hc=abs(a)*ds=sign(d,a)*br=sign(1.0,a)*helsec=1.0s=0.0r=aend ifreturnend
Furthermore, as Edward Anderson discovered in improving LAPACK, a previously overlooked numerical consideration is continuity. To achieve this, we require r to be positive. [2] The following MATLAB/GNU Octave code illustrates the algorithm.
function[c, s, r] = givens_rotation(a, b)ifb==0;c=sign(a);if(c==0);c=1.0;% Unlike other languages, MatLab's sign function returns 0 on input 0.end;s=0;r=abs(a);elseifa==0;c=0;s=-sign(b);r=abs(b);elseifabs(a)>abs(b);t=b/a;u=sign(a)*sqrt(1+t*t);c=1/u;s=-c*t;r=a*u;elset=a/b;u=sign(b)*sqrt(1+t*t);s=-1/u;c=t/u;r=b*u;endend
The IEEE 754 copysign(x,y)
function, provides a safe and cheap way to copy the sign of y
to x
. If that is not available, |x|⋅sgn(y), using the abs and sgn functions, is an alternative as done above.
Given the following 3×3 Matrix:
two iterations of the Givens rotation (note that the Givens rotation algorithm used here differs slightly from above) yield an upper triangular matrix in order to compute the QR decomposition.
In order to form the desired matrix, zeroing elements (2,1) and (3,2) is required; element (2,1) is zeroed first, using a rotation matrix of:
The following matrix multiplication results:
where
Using these values for c and s and performing the matrix multiplication above yields A2:
Zeroing element (3,2) finishes off the process. Using the same idea as before, the rotation matrix is:
Afterwards, the following matrix multiplication is:
where
Using these values for c and s and performing the multiplications results in A3:
This new matrix A3 is the upper triangular matrix needed to perform an iteration of the QR decomposition. Q is now formed using the transpose of the rotation matrices in the following manner:
Performing this matrix multiplication yields:
This completes two iterations of the Givens Rotation and calculating the QR decomposition can now be done.
If performing the above calculations as a step in the QR algorithm for finding the eigenvalues of a matrix, then one next wants to compute the matrix , but one should not do so by first multiplying and to form , instead rather by multiplying each by (on the right). The reason for this is that each multiplication by a Givens matrix on the right changes only two columns of , thus requiring a mere arithmetic operations, which for Givens rotations sums up to arithmetic operations; multiplying by the general matrix would require arithmetic operations. Likewise, storing the full matrix amounts to elements, but each Givens matrix is fully specified by its pair and of them can thus be stored in elements.
In the example,
Another method can extend Givens rotations to complex matrices. A diagonal matrix whose diagonal elements have unit magnitudes but arbitrary phases is unitary. Let A be a matrix for which it is desired to make the ji element be zero using the rows and columns i and j>i. Let D be a diagonal matrix whose diagonal elements are one except the ii and jj diagonal elements which also have unit magnitude but have phases which are to be determined. The phases of the ii and jj elements of D can be chosen so as to make the ii and ji elements of the product matrix D A be real. Then a Givens rotation G can be chosen using the i and j>i rows and columns so as to make the ji element of the product matrix G D A be zero. Since a product of unitary matrices is unitary, the product matrix G D is unitary and so is any product of such matrix pair products.
In Clifford algebra and its child structures such as geometric algebra, rotations are represented by bivectors. Givens rotations are represented by the exterior product of the basis vectors. Given any pair of basis vectors Givens rotations bivectors are:
Their action on any vector is written:
where
There are three Givens rotations in dimension 3:
Given that they are endomorphisms they can be composed with each other as many times as desired, keeping in mind that g ∘ f ≠ f ∘ g.
These three Givens rotations composed can generate any rotation matrix according to Davenport's chained rotation theorem. This means that they can transform the standard basis of the space to any other frame in the space.[ clarification needed ]
When rotations are performed in the right order, the values of the rotation angles of the final frame will be equal to the Euler angles of the final frame in the corresponding convention. For example, an operator transforms the basis of the space into a frame with angles roll, pitch and yaw in the Tait–Bryan convention z-x-y (convention in which the line of nodes is perpendicular to z and Y axes, also named Y-X′-Z″).
For the same reason, any rotation matrix in 3D can be decomposed in a product of three of these rotation operators.
The meaning of the composition of two Givens rotations g ∘ f is an operator that transforms vectors first by f and then by g, being f and g rotations about one axis of basis of the space. This is similar to the extrinsic rotation equivalence for Euler angles.
The following table shows the three Givens rotations equivalent to the different Euler angles conventions using extrinsic composition (composition of rotations about the basis axes) of active rotations and the right-handed rule for the positive sign of the angles.
The notation has been simplified in such a way that c1 means cos θ1 and s2 means sin θ2). The subindexes of the angles are the order in which they are applied using extrinsic composition (1 for intrinsic rotation, 2 for nutation, 3 for precession)
As rotations are applied just in the opposite order of the Euler angles table of rotations, this table is the same but swapping indexes 1 and 3 in the angles associated with the corresponding entry. An entry like zxy means to apply first the y rotation, then x, and finally z, in the basis axes.
All the compositions assume the right hand convention for the matrices that are multiplied, yielding the following results.
xzx | xzy | ||
---|---|---|---|
xyx | xyz | ||
yxy | yxz | ||
yzy | yzx | ||
zyz | zyx | ||
zxz | zxy |
In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.
In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three real numbers: the radial distancer along the radial line connecting the point to the fixed point of origin; the polar angleθ between the radial line and a given polar axis; and the azimuthal angleφ as the angle of rotation of the radial line around the polar axis. (See graphic re the "physics convention".) Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle) is called the reference plane (sometimes fundamental plane).
Kinematics is a subfield of physics and mathematics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of both applied and pure mathematics since it can be studied without considering the mass of a body or the forces acting upon it. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics.
In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors.
An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.
In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.
Unit quaternions, known as versors, provide a convenient mathematical notation for representing spatial orientations and rotations of elements in three dimensional space. Specifically, they encode information about an axis-angle rotation about an arbitrary axis. Rotation and orientation quaternions have applications in computer graphics, computer vision, robotics, navigation, molecular dynamics, flight dynamics, orbital mechanics of satellites, and crystallographic texture analysis.
In vector calculus, the Jacobian matrix of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and the determinant are often referred to simply as the Jacobian in literature. They are named after Carl Gustav Jacob Jacobi.
In the mathematical field of differential geometry, a metric tensor is an additional structure on a manifold M that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there. More precisely, a metric tensor at a point p of M is a bilinear form defined on the tangent space at p, and a metric field on M consists of a metric tensor at each point p of M that varies smoothly with p.
In linear algebra, a QR decomposition, also known as a QR factorization or QU factorization, is a decomposition of a matrix A into a product A = QR of an orthonormal matrix Q and an upper triangular matrix R. QR decomposition is often used to solve the linear least squares (LLS) problem and is the basis for a particular eigenvalue algorithm, the QR algorithm.
An infinitesimal rotation matrix or differential rotation matrix is a matrix representing an infinitely small rotation.
In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function. It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group.
In linear algebra, linear transformations can be represented by matrices. If is a linear transformation mapping to and is a column vector with entries, then for some matrix , called the transformation matrix of . Note that has rows and columns, whereas the transformation is from to . There are alternative expressions of transformation matrices involving row vectors that are preferred by some authors.
In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix
In the theory of three-dimensional rotation, Rodrigues' rotation formula, named after Olinde Rodrigues, is an efficient algorithm for rotating a vector in space, given an axis and angle of rotation. By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3), the group of all rotation matrices, from an axis–angle representation. In terms of Lie theory, the Rodrigues' formula provides an algorithm to compute the exponential map from the Lie algebra so(3) to its Lie group SO(3).
A transversely isotropic material is one with physical properties that are symmetric about an axis that is normal to a plane of isotropy. This transverse plane has infinite planes of symmetry and thus, within this plane, the material properties are the same in all directions. Hence, such materials are also known as "polar anisotropic" materials. In geophysics, vertically transverse isotropy (VTI) is also known as radial anisotropy.
Spatial rotations in three dimensions can be parametrized using both Euler angles and unit quaternions. This article explains how to convert between the two representations. Actually this simple use of "quaternions" was first presented by Euler some seventy years earlier than Hamilton to solve the problem of magic squares. For this reason the dynamics community commonly refers to quaternions in this application as "Euler parameters".
In numerical linear algebra, a Jacobi rotation is a rotation, Qkℓ, of a 2-dimensional linear subspace of an n-dimensional inner product space, chosen to zero a symmetric pair of off-diagonal entries of an n×n real symmetric matrix, A, when applied as a similarity transformation:
In geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.
In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense of the rotation about the axis. Only two numbers, not three, are needed to define the direction of a unit vector e rooted at the origin because the magnitude of e is constrained. For example, the elevation and azimuth angles of e suffice to locate it in any particular Cartesian coordinate frame.