Nonnegative matrix

Last updated

In mathematics, a nonnegative matrix, written

is a matrix in which all the elements are equal to or greater than zero, that is,

Contents

A positive matrix is a matrix in which all the elements are strictly greater than zero. The set of positive matrices is the interior of the set of all non-negative matrices. While such matrices are commonly found, the term "positive matrix" is only occasionally used due to the possible confusion with positive-definite matrices, which are different. A matrix which is both non-negative and is positive semidefinite is called a doubly non-negative matrix.

A rectangular non-negative matrix can be approximated by a decomposition with two other non-negative matrices via non-negative matrix factorization.

Eigenvalues and eigenvectors of square positive matrices are described by the Perron–Frobenius theorem.

Properties

Inversion

The inverse of any non-singular M-matrix [ clarification needed ] is a non-negative matrix. If the non-singular M-matrix is also symmetric then it is called a Stieltjes matrix.

The inverse of a non-negative matrix is usually not non-negative. The exception is the non-negative monomial matrices: a non-negative matrix has non-negative inverse if and only if it is a (non-negative) monomial matrix. Note that thus the inverse of a positive matrix is not positive or even non-negative, as positive matrices are not monomial, for dimension n > 1.

Specializations

There are a number of groups of matrices that form specializations of non-negative matrices, e.g. stochastic matrix; doubly stochastic matrix; symmetric non-negative matrix.

See also

Bibliography

Related Research Articles

In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector where is the row vector transpose of More generally, a Hermitian matrix is positive-definite if the real number is positive for every nonzero complex column vector where denotes the conjugate transpose of

In mathematics, a generalized permutation matrix is a matrix with the same nonzero pattern as a permutation matrix, i.e. there is exactly one nonzero entry in each row and each column. Unlike a permutation matrix, where the nonzero entry must be 1, in a generalized permutation matrix the nonzero entry can be any nonzero value. An example of a generalized permutation matrix is

In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.

In mathematics, Muirhead's inequality, named after Robert Franklin Muirhead, also known as the "bunching" method, generalizes the inequality of arithmetic and geometric means.

In the mathematical field of graph theory, the Laplacian matrix, also called the graph Laplacian, admittance matrix, Kirchhoff matrix or discrete Laplacian, is a matrix representation of a graph. Named after Pierre-Simon Laplace, the graph Laplacian matrix can be viewed as a matrix form of the negative discrete Laplace operator on a graph approximating the negative continuous Laplacian obtained by the finite difference method.

In matrix theory, the Perron–Frobenius theorem, proved by Oskar Perron and Georg Frobenius, asserts that a real square matrix with positive entries has a unique eigenvalue of largest magnitude and that eigenvalue is real. The corresponding eigenvector can be chosen to have strictly positive components, and also asserts a similar statement for certain classes of nonnegative matrices. This theorem has important applications to probability theory ; to the theory of dynamical systems ; to economics ; to demography ; to social networks ; to Internet search engines (PageRank); and even to ranking of American football teams. The first to discuss the ordering of players within tournaments using Perron–Frobenius eigenvectors is Edmund Landau.

In mathematics, especially in probability and combinatorics, a doubly stochastic matrix (also called bistochastic matrix) is a square matrix of nonnegative real numbers, each of whose rows and columns sums to 1, i.e.,

In mathematics, the square root of a matrix extends the notion of square root from numbers to matrices. A matrix B is said to be a square root of A if the matrix product BB is equal to A.

Non-negative matrix factorization, also non-negative matrix approximation is a group of algorithms in multivariate analysis and linear algebra where a matrix V is factorized into (usually) two matrices W and H, with the property that all three matrices have no negative elements. This non-negativity makes the resulting matrices easier to inspect. Also, in applications such as processing of audio spectrograms or muscular activity, non-negativity is inherent to the data being considered. Since the problem is not exactly solvable in general, it is commonly approximated numerically.

The Birkhoff polytopeBn is the convex polytope in RN whose points are the doubly stochastic matrices, i.e., the n × n matrices whose entries are non-negative real numbers and whose rows and columns each add up to 1. It is named after Garrett Birkhoff.

In mathematics, the class of Z-matrices are those matrices whose off-diagonal entries are less than or equal to zero; that is, the matrices of the form:

In mathematics, a polynomial matrix or matrix of polynomials is a matrix whose elements are univariate or multivariate polynomials. Equivalently, a polynomial matrix is a polynomial whose coefficients are matrices.

In mathematics, a Metzler matrix is a matrix in which all the off-diagonal components are nonnegative :

In mathematics, especially linear algebra, an M-matrix is a matrix whose off-diagonal entries are less than or equal to zero and whose eigenvalues have nonnegative real parts. The set of non-singular M-matrices are a subset of the class of P-matrices, and also of the class of inverse-positive matrices. The name M-matrix was seemingly originally chosen by Alexander Ostrowski in reference to Hermann Minkowski, who proved that if a Z-matrix has all of its row sums positive, then the determinant of that matrix is positive.

In mathematics, specifically linear algebra, a real symmetric matrix A is copositive if

In mathematics, a unistochastic matrix is a doubly stochastic matrix whose entries are the squares of the absolute values of the entries of some unitary matrix.

In linear algebra, the nonnegative rank of a nonnegative matrix is a concept similar to the usual linear rank of a real matrix, but adding the requirement that certain coefficients and entries of vectors/matrices have to be nonnegative.

In mathematics, the Haynsworth inertia additivity formula, discovered by Emilie Virginia Haynsworth (1916–1985), concerns the number of positive, negative, and zero eigenvalues of a Hermitian matrix and of block matrices into which it is partitioned.

<span class="mw-page-title-main">Robert J. Plemmons</span> American mathematician

Robert James Plemmons is an American mathematician specializing in computational mathematics. He is the emeritus Z. Smith Reynolds Professor of Mathematics and Computer Science at Wake Forest University. In 1979, Plemmons co-authored the book Nonnegative Matrices in the Mathematical Sciences.