Anticommutative property

Last updated

In mathematics, anticommutativity is a specific property of some non-commutative mathematical operations. Swapping the position of two arguments of an antisymmetric operation yields a result which is the inverse of the result with unswapped arguments. The notion inverse refers to a group structure on the operation's codomain, possibly with another operation. Subtraction is an anticommutative operation because commuting the operands of ab gives ba = −(ab); for example, 2 − 10 = −(10 − 2) = −8. Another prominent example of an anticommutative operation is the Lie bracket.

Contents

In mathematical physics, where symmetry is of central importance, these operations are mostly called antisymmetric operations, and are extended in an associative setting to cover more than two arguments.

Definition

If are two abelian groups, a bilinear map is anticommutative if for all we have

More generally, a multilinear map is anticommutative if for all we have

where is the sign of the permutation .

Properties

If the abelian group has no 2-torsion, implying that if then , then any anticommutative bilinear map satisfies

More generally, by transposing two elements, any anticommutative multilinear map satisfies

if any of the are equal; such a map is said to be alternating . Conversely, using multilinearity, any alternating map is anticommutative. In the binary case this works as follows: if is alternating then by bilinearity we have

and the proof in the multilinear case is the same but in only two of the inputs.

Examples

Examples of anticommutative binary operations include:

See also

Related Research Articles

In mathematics, an associative algebraA over a commutative ring K is a ring A together with a ring homomorphism from K into the center of A. This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a module or vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over K. A standard first example of a K-algebra is a ring of square matrices over a commutative ring K, with the usual matrix multiplication.

In abstract algebra, an alternative algebra is an algebra in which multiplication need not be associative, only alternative. That is, one must have

In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra over the real or complex numbers that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm. The norm is required to satisfy

In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The ordered pair is called a measurable space.

In mathematics, the tensor product of two vector spaces V and W is a vector space to which is associated a bilinear map that maps a pair to an element of denoted

In mathematics, when X is a finite set with at least two elements, the permutations of X (i.e. the bijective functions from X to X) fall into two classes of equal size: the even permutations and the odd permutations. If any total ordering of X is fixed, the parity (oddness or evenness) of a permutation of X can be defined as the parity of the number of inversions for σ, i.e., of pairs of elements x, y of X such that x < y and σ(x) > σ(y).

<span class="mw-page-title-main">Exterior algebra</span> Algebra of exterior/ wedge products

In mathematics, the exterior algebra or Grassmann algebra of a vector space is an associative algebra that contains which has a product, called exterior product or wedge product and denoted with , such that for every vector in The exterior algebra is named after Hermann Grassmann, and the names of the product come from the "wedge" symbol and the fact that the product of two elements of are "outside"

In abstract algebra and multilinear algebra, a multilinear form on a vector space over a field is a map

In mathematics, specifically in algebraic topology, the cup product is a method of adjoining two cocycles of degree p and q to form a composite cocycle of degree p + q. This defines an associative (and distributive) graded commutative product operation in cohomology, turning the cohomology of a space X into a graded ring, H(X), called the cohomology ring. The cup product was introduced in work of J. W. Alexander, Eduard Čech and Hassler Whitney from 1935–1938, and, in full generality, by Samuel Eilenberg in 1944.

In mathematics, a sesquilinear form is a generalization of a bilinear form that, in turn, is a generalization of the concept of the dot product of Euclidean space. A bilinear form is linear in each of its arguments, but a sesquilinear form allows one of the arguments to be "twisted" in a semilinear manner, thus the name; which originates from the Latin numerical prefix sesqui- meaning "one and a half". The basic concept of the dot product – producing a scalar from a pair of vectors – can be generalized by allowing a broader range of scalar values and, perhaps simultaneously, by widening the definition of a vector.

<span class="mw-page-title-main">Symmetry in mathematics</span>

Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations.

In mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps to be carried out in terms of linear maps. The module construction is analogous to the construction of the tensor product of vector spaces, but can be carried out for a pair of modules over a commutative ring resulting in a third module, and also for a pair of a right-module and a left-module over any ring, with result an abelian group. Tensor products are important in areas of abstract algebra, homological algebra, algebraic topology, algebraic geometry, operator algebras and noncommutative geometry. The universal property of the tensor product of vector spaces extends to more general situations in abstract algebra. The tensor product of an algebra and a module can be used for extension of scalars. For a commutative ring, the tensor product of modules can be iterated to form the tensor algebra of a module, allowing one to define multiplication in the module in a universal way.

In mathematics, the algebraic bracket or Nijenhuis–Richardson bracket is a graded Lie algebra structure on the space of alternating multilinear forms of a vector space to itself, introduced by A. Nijenhuis and R. W. Richardson, Jr. It is related to but not the same as the Frölicher–Nijenhuis bracket and the Schouten–Nijenhuis bracket.

A non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × AA which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation. Since it is not assumed that the multiplication is associative, using parentheses to indicate the order of multiplications is necessary. For example, the expressions (ab)(cd), (a(bc))d and a(b(cd)) may all yield different answers.

In mathematics, more specifically in multilinear algebra, an alternating multilinear map is a multilinear map with all arguments belonging to the same vector space that is zero whenever any pair of its arguments is equal. This generalizes directly to a module over a commutative ring.

In commutative algebra, an element b of a commutative ring B is said to be integral over a subring A of B if b is a root of some monic polynomial over A.

In algebra, an alternating polynomial is a polynomial such that if one switches any two of the variables, the polynomial changes sign:

In ring theory, a branch of mathematics, a ring R is a polynomial identity ring if there is, for some N > 0, an element P ≠ 0 of the free algebra, ZX1, X2, ..., XN, over the ring of integers in N variables X1, X2, ..., XN such that

In algebra, the Amitsur–Levitzki theorem states that the algebra of n × n matrices over a commutative ring satisfies a certain identity of degree 2n. It was proved by Amitsur and Levitsky. In particular matrix rings are polynomial identity rings such that the smallest identity they satisfy has degree exactly 2n.

This article summarizes several identities in exterior calculus.

References