Parity of a permutation

Last updated
Permutations of 4 elements

Odd permutations have a green or orange background. The numbers in the right column are the inversion numbers (sequence A034968 in the OEIS), which have the same parity as the permutation. Symmetric group 4; permutation list.svg
Permutations of 4 elements

Odd permutations have a green or orange background. The numbers in the right column are the inversion numbers (sequence A034968 in the OEIS ), which have the same parity as the permutation.

In mathematics, when X is a finite set with at least two elements, the permutations of X (i.e. the bijective functions from X to X) fall into two classes of equal size: the even permutations and the odd permutations. If any total ordering of X is fixed, the parity (oddness or evenness) of a permutation of X can be defined as the parity of the number of inversions for σ, i.e., of pairs of elements x, y of X such that x < y and σ(x) > σ(y).

Contents

The sign, signature, or signum of a permutation σ is denoted sgn(σ) and defined as +1 if σ is even and 1 if σ is odd. The signature defines the alternating character of the symmetric group Sn. Another notation for the sign of a permutation is given by the more general Levi-Civita symbol (εσ), which is defined for all maps from X to X, and has value zero for non-bijective maps.

The sign of a permutation can be explicitly expressed as

sgn(σ) = (−1)N(σ)

where N(σ) is the number of inversions in σ.

Alternatively, the sign of a permutation σ can be defined from its decomposition into the product of transpositions as

sgn(σ) = (−1)m

where m is the number of transpositions in the decomposition. Although such a decomposition is not unique, the parity of the number of transpositions in all decompositions is the same, implying that the sign of a permutation is well-defined. [1]

Example

Consider the permutation σ of the set {1, 2, 3, 4, 5} defined by and In one-line notation, this permutation is denoted 34521. It can be obtained from the identity permutation 12345 by three transpositions: first exchange the numbers 2 and 4, then exchange 3 and 5, and finally exchange 1 and 3. This shows that the given permutation σ is odd. Following the method of the cycle notation article, this could be written, composing from right to left, as

There are many other ways of writing σ as a composition of transpositions, for instance

σ = (1 5)(3 4)(2 4)(1 2)(2 3),

but it is impossible to write it as a product of an even number of transpositions.

Properties

The identity permutation is an even permutation. [1] An even permutation can be obtained as the composition of an even number (and only an even number) of exchanges (called transpositions) of two elements, while an odd permutation can be obtained by (only) an odd number of transpositions.

The following rules follow directly from the corresponding rules about addition of integers: [1]

From these it follows that

Considering the symmetric group Sn of all permutations of the set {1, ..., n}, we can conclude that the map

sgn: Sn → {−1, 1} 

that assigns to every permutation its signature is a group homomorphism. [2]

Furthermore, we see that the even permutations form a subgroup of Sn. [1] This is the alternating group on n letters, denoted by An. [3] It is the kernel of the homomorphism sgn. [4] The odd permutations cannot form a subgroup, since the composite of two odd permutations is even, but they form a coset of An (in Sn). [5]

If n > 1, then there are just as many even permutations in Sn as there are odd ones; [3] consequently, An contains n!/2 permutations. (The reason is that if σ is even then (1  2)σ is odd, and if σ is odd then (1  2)σ is even, and these two maps are inverse to each other.) [3]

A cycle is even if and only if its length is odd. This follows from formulas like

In practice, in order to determine whether a given permutation is even or odd, one writes the permutation as a product of disjoint cycles. The permutation is odd if and only if this factorization contains an odd number of even-length cycles.

Another method for determining whether a given permutation is even or odd is to construct the corresponding permutation matrix and compute its determinant. The value of the determinant is the same as the parity of the permutation.

Every permutation of odd order must be even. The permutation (1 2)(3 4) in A4 shows that the converse is not true in general.

Equivalence of the two definitions

This section presents proofs that the parity of a permutation σ can be defined in two equivalent ways:

Proof 1

Let σ be a permutation on a ranked domain S. Every permutation can be produced by a sequence of transpositions (2-element exchanges). Let the following be one such decomposition

σ = T1T2 ... Tk

We want to show that the parity of k is equal to the parity of the number of inversions of σ.

Every transposition can be written as a product of an odd number of transpositions of adjacent elements, e.g.

(2 5) = (2 3) (3 4) (4 5) (4 3) (3 2).

Generally, we can write the transposition (i i+d) on the set {1,...,i,...,i+d,...} as the composition of 2d−1 adjacent transpositions by recursion on d:

  • The base case d=1 is trivial.
  • In the recursive case, first rewrite (i, i+d) as (i, i+1) (i+1, i+d) (i, i+1). Then recursively rewrite (i+1, i+d) as adjacent transpositions.

If we decompose in this way each of the transpositions T1 ... Tk above, we get the new decomposition:

σ = A1A2 ... Am

where all of the A1...Am are adjacent. Also, the parity of m is the same as that of k.

This is a fact: for all permutation τ and adjacent transposition a, either has one less or one more inversion than τ. In other words, the parity of the number of inversions of a permutation is switched when composed with an adjacent transposition.

Therefore, the parity of the number of inversions of σ is precisely the parity of m, which is also the parity of k. This is what we set out to prove.

We can thus define the parity of σ to be that of its number of constituent transpositions in any decomposition. And this must agree with the parity of the number of inversions under any ordering, as seen above. Therefore, the definitions are indeed well-defined and equivalent.
Proof 2

An alternative proof uses the Vandermonde polynomial

So for instance in the case n = 3, we have

Now for a given permutation σ of the numbers {1, ..., n}, we define

Since the polynomial has the same factors as except for their signs, it follows that sgn(σ) is either +1 or 1. Furthermore, if σ and τ are two permutations, we see that

Since with this definition it is furthermore clear that any transposition of two elements has signature 1, we do indeed recover the signature as defined earlier.
Proof 3

A third approach uses the presentation of the group Sn in terms of generators τ1, ..., τn1 and relations

  •   for all i
  •   for all i < n  1
  •   if
[Here the generator represents the transposition (i, i + 1).] All relations keep the length of a word the same or change it by two. Starting with an even-length word will thus always result in an even-length word after using the relations, and similarly for odd-length words. It is therefore unambiguous to call the elements of Sn represented by even-length words "even", and the elements represented by odd-length words "odd".
Proof 4

Recall that a pair x, y such that x < y and σ(x) > σ(y) is called an inversion. We want to show that the count of inversions has the same parity as the count of 2-element swaps. To do that, we can show that every swap changes the parity of the count of inversions, no matter which two elements are being swapped and what permutation has already been applied. Suppose we want to swap the ith and the jth element. Clearly, inversions formed by i or j with an element outside of [i, j] will not be affected. For the n = ji 1 elements within the interval (i, j), assume vi of them form inversions with i and vj of them form inversions with j. If i and j are swapped, those vi inversions with i are gone, but nvi inversions are formed. The count of inversions i gained is thus n 2vi, which has the same parity as n.

Similarly, the count of inversions j gained also has the same parity as n. Therefore, the count of inversions gained by both combined has the same parity as 2n or 0. Now if we count the inversions gained (or lost) by swapping the ith and the jth element, we can see that this swap changes the parity of the count of inversions, since we also add (or subtract) 1 to the number of inversions gained (or lost) for the pair (i,j).

Note that initially when no swap is applied, the count of inversions is 0. Now we obtain equivalence of the two definitions of parity of a permutation.
Proof 5

Consider the elements that are sandwiched by the two elements of a transposition. Each one lies completely above, completely below, or in between the two transposition elements.

An element that is either completely above or completely below contributes nothing to the inversion count when the transposition is applied. Elements in-between contribute .

As the transposition itself supplies inversion, and all others supply 0 (mod 2) inversions, a transposition changes the parity of the number of inversions.

Other definitions and proofs

The parity of a permutation of points is also encoded in its cycle structure.

Let σ = (i1i2 ... ir+1)(j1j2 ... js+1)...(12 ... u+1) be the unique decomposition of σ into disjoint cycles, which can be composed in any order because they commute. A cycle (abc ... xyz) involving k + 1 points can always be obtained by composing k transpositions (2-cycles):

so call k the size of the cycle, and observe that, under this definition, transpositions are cycles of size 1. From a decomposition into m disjoint cycles we can obtain a decomposition of σ into k1 + k2 + ... + km transpositions, where ki is the size of the ith cycle. The number N(σ) = k1 + k2 + ... + km is called the discriminant of σ, and can also be computed as

if we take care to include the fixed points of σ as 1-cycles.

Suppose a transposition (ab) is applied after a permutation σ. When a and b are in different cycles of σ then

,

and if a and b are in the same cycle of σ then

.

In either case, it can be seen that N((ab)σ) = N(σ) ± 1, so the parity of N((ab)σ) will be different from the parity of N(σ).

If σ = t1t2 ... tr is an arbitrary decomposition of a permutation σ into transpositions, by applying the r transpositions after t2 after ... after tr after the identity (whose N is zero) observe that N(σ) and r have the same parity. By defining the parity of σ as the parity of N(σ), a permutation that has an even length decomposition is an even permutation and a permutation that has one odd length decomposition is an odd permutation.

Remarks

Generalizations

Parity can be generalized to Coxeter groups: one defines a length function ℓ(v), which depends on a choice of generators (for the symmetric group, adjacent transpositions), and then the function v ↦ (1)ℓ(v) gives a generalized sign map.

See also

Notes

  1. 1 2 3 4 Jacobson (2009), p. 50.
  2. Rotman (1995), p. 9, Theorem 1.6.
  3. 1 2 3 Jacobson (2009), p. 51.
  4. Goodman, p. 116, definition 2.4.21
  5. Meijer & Bauer (2004), p. 72

Related Research Articles

In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. The determinant of a matrix A is commonly denoted det(A), det A, or |A|. Its value characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the linear map represented by the matrix is an isomorphism. The determinant of a product of matrices is the product of their determinants (which follows directly from the above properties).

<span class="mw-page-title-main">Symmetric group</span> Type of group in abstract algebra

In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group defined over a finite set of symbols consists of the permutations that can be performed on the symbols. Since there are such permutation operations, the order of the symmetric group is .

<span class="mw-page-title-main">Permutation</span> Mathematical version of an order change

In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or process of changing the linear order of an ordered set.

In mathematics, particularly in linear algebra, tensor analysis, and differential geometry, the Levi-Civita symbol or Levi-Civita epsilon represents a collection of numbers; defined from the sign of a permutation of the natural numbers 1, 2, ..., n, for some positive integer n. It is named after the Italian mathematician and physicist Tullio Levi-Civita. Other names include the permutation symbol, antisymmetric symbol, or alternating symbol, which refer to its antisymmetric property and definition in terms of permutations.

In mathematics, particularly in matrix theory, a permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column and 0s elsewhere. Each such matrix, say P, represents a permutation of m elements and, when used to multiply another matrix, say A, results in permuting the rows or columns of the matrix A.

In mathematics, and in particular in group theory, a cyclic permutation is a permutation consisting of a single cycle. In some cases, cyclic permutations are referred to as cycles; if a cyclic permutation has k elements, it may be called a k-cycle. Some authors widen this definition to include permutations with fixed points in addition to at most one non-trivial cycle. In cycle notation, cyclic permutations are denoted by the list of their elements enclosed with parentheses, in the order to which they are permuted.

In mathematics, the determinant of an m×m skew-symmetric matrix can always be written as the square of a polynomial in the matrix entries, a polynomial with integer coefficients that only depends on m. When m is odd, the polynomial is zero. When m is even, it is a nonzero polynomial of degree m/2, and is unique up to multiplication by ±1. The convention on skew-symmetric tridiagonal matrices, given below in the examples, then determines one specific polynomial, called the Pfaffian polynomial. The value of this polynomial, when applied to the entries of a skew-symmetric matrix, is called the Pfaffian of that matrix. The term Pfaffian was introduced by Cayley (1852), who indirectly named them after Johann Friedrich Pfaff.

In physics, the S-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).

<span class="mw-page-title-main">Fermi's interaction</span> Mechanism of beta decay proposed in 1933

In particle physics, Fermi's interaction is an explanation of the beta decay, proposed by Enrico Fermi in 1933. The theory posits four fermions directly interacting with one another. This interaction explains beta decay of a neutron by direct coupling of a neutron with an electron, a neutrino and a proton.

In mathematics, the rearrangement inequality states that

In abstract algebra, Hilbert's Theorem 90 (or Satz 90) is an important result on cyclic extensions of fields (or to one of its generalizations) that leads to Kummer theory. In its most basic form, it states that if L/K is an extension of fields with cyclic Galois group G = Gal(L/K) generated by an element and if is an element of L of relative norm 1, that is

Eisenstein series, named after German mathematician Gotthold Eisenstein, are particular modular forms with infinite series expansions that may be written down directly. Originally defined for the modular group, Eisenstein series can be generalized in the theory of automorphic forms.

In linear algebra, the Laplace expansion, named after Pierre-Simon Laplace, also called cofactor expansion, is an expression of the determinant of an n × n matrix B as a weighted sum of minors, which are the determinants of some (n − 1) × (n − 1) submatrices of B. Specifically, for every i, the Laplace expansion along the ith row is the equality

In algebra, the Leibniz formula, named in honor of Gottfried Leibniz, expresses the determinant of a square matrix in terms of permutations of the matrix elements. If is an matrix, where is the entry in the -th row and -th column of , the formula is

In mathematics, the immanant of a matrix was defined by Dudley E. Littlewood and Archibald Read Richardson as a generalisation of the concepts of determinant and permanent.

In quantum mechanics, an antisymmetrizer is a linear operator that makes a wave function of N identical fermions antisymmetric under the exchange of the coordinates of any pair of fermions. After application of the wave function satisfies the Pauli exclusion principle. Since is a projection operator, application of the antisymmetrizer to a wave function that is already totally antisymmetric has no effect, acting as the identity operator.

Neural cryptography is a branch of cryptography dedicated to analyzing the application of stochastic algorithms, especially artificial neural network algorithms, for use in encryption and cryptanalysis.

In mathematics, the ELSV formula, named after its four authors Torsten Ekedahl, Sergei Lando, Michael Shapiro, Alek Vainshtein, is an equality between a Hurwitz number and an integral over the moduli space of stable curves.

In the mathematical field of group theory, an Artin transfer is a certain homomorphism from an arbitrary finite or infinite group to the commutator quotient group of a subgroup of finite index. Originally, such mappings arose as group theoretic counterparts of class extension homomorphisms of abelian extensions of algebraic number fields by applying Artin's reciprocity maps to ideal class groups and analyzing the resulting homomorphisms between quotients of Galois groups. However, independently of number theoretic applications, a partial order on the kernels and targets of Artin transfers has recently turned out to be compatible with parent-descendant relations between finite p-groups, which can be visualized in descendant trees. Therefore, Artin transfers provide a valuable tool for the classification of finite p-groups and for searching and identifying particular groups in descendant trees by looking for patterns defined by the kernels and targets of Artin transfers. These strategies of pattern recognition are useful in purely group theoretic context, as well as for applications in algebraic number theory concerning Galois groups of higher p-class fields and Hilbert p-class field towers.

In mathematics, there are two natural interpretations of the place-permutation action of symmetric groups, in which the group elements act on positions or places. Each may be regarded as either a left or a right action, depending on the order in which one chooses to compose permutations. There are just two interpretations of the meaning of "acting by a permutation " but these lead to four variations, depending whether maps are written on the left or right of their arguments. The presence of so many variations often leads to confusion. When regarding the group algebra of a symmetric group as a diagram algebra it is natural to write maps on the right so as to compute compositions of diagrams from left to right.

References