Baer ring

Last updated

In abstract algebra and functional analysis, Baer rings, Baer *-rings, Rickart rings, Rickart *-rings, and AW*-algebras are various attempts to give an algebraic analogue of von Neumann algebras, using axioms about annihilators of various sets.

Contents

Any von Neumann algebra is a Baer *-ring, and much of the theory of projections in von Neumann algebras can be extended to all Baer *-rings, For example, Baer *-rings can be divided into types I, II, and III in the same way as von Neumann algebras.

In the literature, left Rickart rings have also been termed left PP-rings. ("Principal implies projective": See definitions below.)

Definitions

  1. the left annihilator of any single element of R is generated (as a left ideal) by an idempotent element.
  2. (For unital rings) the left annihilator of any element is a direct summand of R.
  3. All principal left ideals (ideals of the form Rx) are projective R modules. [1]
  1. The left annihilator of any subset of R is generated (as a left ideal) by an idempotent element.
  2. (For unital rings) The left annihilator of any subset of R is a direct summand of R. [2] For unital rings, replacing all occurrences of 'left' with 'right' yields an equivalent definition, that is to say, the definition is left-right symmetric. [3]

In operator theory, the definitions are strengthened slightly by requiring the ring R to have an involution . Since this makes R isomorphic to its opposite ring Rop, the definition of Rickart *-ring is left-right symmetric.

Examples

Properties

The projections in a Rickart *-ring form a lattice, which is complete if the ring is a Baer *-ring.

See also

Notes

  1. Rickart rings are named after Rickart (1946) who studied a similar property in operator algebras. This "principal implies projective" condition is the reason Rickart rings are sometimes called PP-rings. ( Lam 1999 )
  2. This condition was studied by ReinholdBaer  ( 1952 ).
  3. T.Y. Lam (1999), "Lectures on Modules and Rings" ISBN   0-387-98428-3 pp.260

Related Research Articles

In mathematics, and more specifically in abstract algebra, a *-algebra is a mathematical structure consisting of two involutive ringsR and A, where R is commutative and A has the structure of an associative algebra over R. Involutive algebras generalize the idea of a number system equipped with conjugation, for example the complex numbers and complex conjugation, matrices over the complex numbers and conjugate transpose, and linear operators over a Hilbert space and Hermitian adjoints. However, it may happen that an algebra admits no involution.

In mathematics, a von Neumann algebra or W*-algebra is a *-algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. It is a special type of C*-algebra.

In mathematics, the annihilator of a subset S of a module over a ring is the ideal formed by the elements of the ring that give always zero when multiplied by each element of S.

In ring theory, a branch of mathematics, an idempotent element or simply idempotent of a ring is an element a such that a2 = a. That is, the element is idempotent under the ring's multiplication. Inductively then, one can also conclude that a = a2 = a3 = a4 = ... = an for any positive integer n. For example, an idempotent element of a matrix ring is precisely an idempotent matrix.

In mathematics, particularly in algebra, the class of projective modules enlarges the class of free modules over a ring, keeping some of the main properties of free modules. Various equivalent characterizations of these modules appear below.

In ring theory, a branch of mathematics, a radical of a ring is an ideal of "not-good" elements of the ring.

In mathematics, specifically in the field of group theory, a divisible group is an abelian group in which every element can, in some sense, be divided by positive integers, or more accurately, every element is an nth multiple for each positive integer n. Divisible groups are important in understanding the structure of abelian groups, especially because they are the injective abelian groups.

In mathematics, a von Neumann regular ring is a ring R such that for every element a in R there exists an x in R with a = axa. One may think of x as a "weak inverse" of the element a; in general x is not uniquely determined by a. Von Neumann regular rings are also called absolutely flat rings, because these rings are characterized by the fact that every left R-module is flat.

In mathematics, specifically in ring theory, a torsion element is an element of a module that yields zero when multiplied by some non-zero-divisor of the ring. The torsion submodule of a module is the submodule formed by the torsion elements. A torsion module is a module consisting entirely of torsion elements. A module is torsion-free if its only torsion element is the zero element.

In mathematics, especially in the area of abstract algebra known as module theory, a ring R is called hereditary if all submodules of projective modules over R are again projective. If this is required only for finitely generated submodules, it is called semihereditary.

<span class="mw-page-title-main">Semiprime ring</span> Generalizations of prime ideals and prime rings

In ring theory, a branch of mathematics, semiprime ideals and semiprime rings are generalizations of prime ideals and prime rings. In commutative algebra, semiprime ideals are also called radical ideals and semiprime rings are the same as reduced rings.

In mathematics, a Prüfer domain is a type of commutative ring that generalizes Dedekind domains in a non-Noetherian context. These rings possess the nice ideal and module theoretic properties of Dedekind domains, but usually only for finitely generated modules. Prüfer domains are named after the German mathematician Heinz Prüfer.

In the area of abstract algebra known as ring theory, a left perfect ring is a type of ring over which all left modules have projective covers. The right case is defined by analogy, and the condition is not left-right symmetric; that is, there exist rings which are perfect on one side but not the other. Perfect rings were introduced in Bass's book.

In mathematics, specifically ring theory, the notion of quasiregularity provides a computationally convenient way to work with the Jacobson radical of a ring. In this article, we primarily concern ourselves with the notion of quasiregularity for unital rings. However, one section is devoted to the theory of quasiregularity in non-unital rings, which constitutes an important aspect of noncommutative ring theory.

In mathematics, especially ring theory, a regular ideal can refer to multiple concepts.

In the branches of abstract algebra known as ring theory and module theory, each right (resp. left) R-moduleM has a singular submodule consisting of elements whose annihilators are essential right (resp. left) ideals in R. In set notation it is usually denoted as . For general rings, is a good generalization of the torsion submodule tors(M) which is most often defined for domains. In the case that R is a commutative domain, .

In mathematics, continuous geometry is an analogue of complex projective geometry introduced by von Neumann, where instead of the dimension of a subspace being in a discrete set , it can be an element of the unit interval . Von Neumann was motivated by his discovery of von Neumann algebras with a dimension function taking a continuous range of dimensions, and the first example of a continuous geometry other than projective space was the projections of the hyperfinite type II factor.

In mathematics, almost modules and almost rings are certain objects interpolating between rings and their fields of fractions. They were introduced by Gerd Faltings in his study of p-adic Hodge theory.

In mathematics, Jordan operator algebras are real or complex Jordan algebras with the compatible structure of a Banach space. When the coefficients are real numbers, the algebras are called Jordan Banach algebras. The theory has been extensively developed only for the subclass of JB algebras. The axioms for these algebras were devised by Alfsen, Shultz & Størmer (1978). Those that can be realised concretely as subalgebras of self-adjoint operators on a real or complex Hilbert space with the operator Jordan product and the operator norm are called JC algebras. The axioms for complex Jordan operator algebras, first suggested by Irving Kaplansky in 1976, require an involution and are called JB* algebras or Jordan C* algebras. By analogy with the abstract characterisation of von Neumann algebras as C* algebras for which the underlying Banach space is the dual of another, there is a corresponding definition of JBW algebras. Those that can be realised using ultraweakly closed Jordan algebras of self-adjoint operators with the operator Jordan product are called JW algebras. The JBW algebras with trivial center, so-called JBW factors, are classified in terms of von Neumann factors: apart from the exceptional 27 dimensional Albert algebra and the spin factors, all other JBW factors are isomorphic either to the self-adjoint part of a von Neumann factor or to its fixed point algebra under a period two *-anti-automorphism. Jordan operator algebras have been applied in quantum mechanics and in complex geometry, where Koecher's description of bounded symmetric domains using Jordan algebras has been extended to infinite dimensions.

In mathematics, an AW*-algebra is an algebraic generalization of a W*-algebra. They were introduced by Irving Kaplansky in 1951. As operator algebras, von Neumann algebras, among all C*-algebras, are typically handled using one of two means: they are the dual space of some Banach space, and they are determined to a large extent by their projections. The idea behind AW*-algebras is to forgo the former, topological, condition, and use only the latter, algebraic, condition.

References