Baer ring

Last updated

In abstract algebra and functional analysis, Baer rings, Baer *-rings, Rickart rings, Rickart *-rings, and AW*-algebras are various attempts to give an algebraic analogue of von Neumann algebras, using axioms about annihilators of various sets.

Contents

Any von Neumann algebra is a Baer *-ring, and much of the theory of projections in von Neumann algebras can be extended to all Baer *-rings, For example, Baer *-rings can be divided into types I, II, and III in the same way as von Neumann algebras.

In the literature, left Rickart rings have also been termed left PP-rings. ("Principal implies projective": See definitions below.)

Definitions

  1. the left annihilator of any single element of R is generated (as a left ideal) by an idempotent element.
  2. (For unital rings) the left annihilator of any element is a direct summand of R.
  3. All principal left ideals (ideals of the form Rx) are projective R modules. [1]
  1. The left annihilator of any subset of R is generated (as a left ideal) by an idempotent element.
  2. (For unital rings) The left annihilator of any subset of R is a direct summand of R. [2] For unital rings, replacing all occurrences of 'left' with 'right' yields an equivalent definition, that is to say, the definition is left-right symmetric. [3]

In operator theory, the definitions are strengthened slightly by requiring the ring R to have an involution . Since this makes R isomorphic to its opposite ring Rop, the definition of Rickart *-ring is left-right symmetric.

Examples

Properties

The projections in a Rickart *-ring form a lattice, which is complete if the ring is a Baer *-ring.

See also

Notes

  1. Rickart rings are named after Rickart (1946) who studied a similar property in operator algebras. This "principal implies projective" condition is the reason Rickart rings are sometimes called PP-rings. ( Lam 1999 )
  2. This condition was studied by ReinholdBaer  ( 1952 ).
  3. T.Y. Lam (1999), "Lectures on Modules and Rings" ISBN   0-387-98428-3 pp.260

Related Research Articles

In mathematics, specifically in functional analysis, a C-algebra is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra A of continuous linear operators on a complex Hilbert space with two additional properties:

Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject.

In mathematics, and more specifically in abstract algebra, a *-algebra is a mathematical structure consisting of two involutive ringsR and A, where R is commutative and A has the structure of an associative algebra over R. Involutive algebras generalize the idea of a number system equipped with conjugation, for example the complex numbers and complex conjugation, matrices over the complex numbers and conjugate transpose, and linear operators over a Hilbert space and Hermitian adjoints. However, it may happen that an algebra admits no involution.

In mathematics, a von Neumann algebra or W*-algebra is a *-algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. It is a special type of C*-algebra.

In mathematics, the annihilator of a subset S of a module over a ring is the ideal formed by the elements of the ring that give always zero when multiplied by an element of S.

In ring theory an idempotent element, or simply an idempotent, of a ring is an element a such that a2 = a. That is, the element is idempotent under the ring's multiplication. Inductively then, one can also conclude that a = a2 = a3 = a4 = ... = an for any positive integer n. For example, an idempotent element of a matrix ring is precisely an idempotent matrix.

In ring theory, a branch of mathematics, a radical of a ring is an ideal of "not-good" elements of the ring.

In mathematics, especially in the field of group theory, a divisible group is an abelian group in which every element can, in some sense, be divided by positive integers, or more accurately, every element is an nth multiple for each positive integer n. Divisible groups are important in understanding the structure of abelian groups, especially because they are the injective abelian groups.

In mathematics, a von Neumann regular ring is a ring R such that for every element a in R there exists an x in R with a = axa. One may think of x as a "weak inverse" of the element a; in general x is not uniquely determined by a. Von Neumann regular rings are also called absolutely flat rings, because these rings are characterized by the fact that every left R-module is flat.

In abstract algebra, a Jordan algebra is a nonassociative algebra over a field whose multiplication satisfies the following axioms:

  1. .

In mathematics, especially in the area of abstract algebra known as module theory, a ring R is called hereditary if all submodules of projective modules over R are again projective. If this is required only for finitely generated submodules, it is called semihereditary.

In mathematics, a finite von Neumann algebra is a von Neumann algebra in which every isometry is a unitary. In other words, for an operator V in a finite von Neumann algebra if , then . In terms of the comparison theory of projections, the identity operator is not equivalent to any proper subprojection in the von Neumann algebra.

In mathematics, a Prüfer domain is a type of commutative ring that generalizes Dedekind domains in a non-Noetherian context. These rings possess the nice ideal and module theoretic properties of Dedekind domains, but usually only for finitely generated modules. Prüfer domains are named after the German mathematician Heinz Prüfer.

In mathematics, especially ring theory, a regular ideal can refer to multiple concepts.

In mathematics, a Zorn ring is an alternative ring in which for every non-nilpotent x there exists an element y such that xy is a non-zero idempotent. Kaplansky (1951) named them after Max August Zorn, who studied a similar condition in.

In the branches of abstract algebra known as ring theory and module theory, each right R-module M has a singular submodule consisting of elements whose annihilators are essential right ideals in R. In set notation it is usually denoted as . For general rings, is a good generalization of the torsion submodule tors(M) which is most often defined for domains. In the case that R is a commutative domain, .

In mathematics, continuous geometry is an analogue of complex projective geometry introduced by von Neumann, where instead of the dimension of a subspace being in a discrete set 0, 1, ..., n, it can be an element of the unit interval [0,1]. Von Neumann was motivated by his discovery of von Neumann algebras with a dimension function taking a continuous range of dimensions, and the first example of a continuous geometry other than projective space was the projections of the hyperfinite type II factor.

In mathematics, almost modules and almost rings are certain objects interpolating between rings and their fields of fractions. They were introduced by Gerd Faltings (1988) in his study of p-adic Hodge theory.

In mathematics, Jordan operator algebras are real or complex Jordan algebras with the compatible structure of a Banach space. When the coefficients are real numbers, the algebras are called Jordan Banach algebras. The theory has been extensively developed only for the subclass of JB algebras. The axioms for these algebras were devised by Alfsen, Schultz & Størmer (1978). Those that can be realised concretely as subalgebras of self-adjoint operators on a real or complex Hilbert space with the operator Jordan product and the operator norm are called JC algebras. The axioms for complex Jordan operator algebras, first suggested by Irving Kaplansky in 1976, require an involution and are called JB* algebras or Jordan C* algebras. By analogy with the abstract characterisation of von Neumann algebras as C* algebras for which the underlying Banach space is the dual of another, there is a corresponding definition of JBW algebras. Those that can be realised using ultraweakly closed Jordan algebras of self-adjoint operators with the operator Jordan product are called JW algebras. The JBW algebras with trivial center, so-called JBW factors, are classified in terms of von Neumann factors: apart from the exceptional 27 dimensional Albert algebra and the spin factors, all other JBW factors are isomorphic either to the self-adjoint part of a von Neumann factor or to its fixed point algebra under a period two *-anti-automorphism. Jordan operator algebras have been applied in quantum mechanics and in complex geometry, where Koecher's description of bounded symmetric domains using Jordan algebras has been extended to infinite dimensions.

In mathematics, an AW*-algebra is an algebraic generalization of a W*-algebra. They were introduced by Irving Kaplansky in 1951. As operator algebras, von Neumann algebras, among all C*-algebras, are typically handled using one of two means: they are the dual space of some Banach space, and they are determined to a large extent by their projections. The idea behind AW*-algebras is to forgo the former, topological, condition, and use only the latter, algebraic, condition.

References