AW*-algebra

Last updated

In mathematics, an AW*-algebra is an algebraic generalization of a W*-algebra. They were introduced by Irving Kaplansky in 1951. [1] As operator algebras, von Neumann algebras, among all C*-algebras, are typically handled using one of two means: they are the dual space of some Banach space, and they are determined to a large extent by their projections. The idea behind AW*-algebras is to forgo the former, topological, condition, and use only the latter, algebraic, condition.

Contents

Definition

Recall that a projection of a C*-algebra is a self-adjoint idempotent element. A C*-algebra A is an AW*-algebra if for every subset S of A, the left annihilator

is generated as a left ideal by some projection p of A, and similarly the right annihilator is generated as a right ideal by some projection q:

.

Hence an AW*-algebra is a C*-algebras that is at the same time a Baer *-ring.

The original definition of Kaplansky states that an AW*-algebra is a C*-algebra such that (1) any set of orthogonal projections has a least upper bound, and (2) that each maximal commutative C*-subalgebra is generated by its projections. The first condition states that the projections have an interesting structure, while the second condition ensures that there are enough projections for it to be interesting. [1] Note that the second condition is equivalent to the condition that each maximal commutative C*-subalgebra is monotone complete.

Structure theory

Many results concerning von Neumann algebras carry over to AW*-algebras. For example, AW*-algebras can be classified according to the behavior of their projections, and decompose into types. [2] For another example, normal matrices with entries in an AW*-algebra can always be diagonalized. [3] AW*-algebras also always have polar decomposition. [4]

However, there are also ways in which AW*-algebras behave differently from von Neumann algebras. [5] For example, AW*-algebras of type I can exhibit pathological properties, [6] even though Kaplansky already showed that such algebras with trivial center are automatically von Neumann algebras.

The commutative case

A commutative C*-algebra is an AW*-algebra if and only if its spectrum is a Stonean space. Via Stone duality, commutative AW*-algebras therefore correspond to complete Boolean algebras. The projections of a commutative AW*-algebra form a complete Boolean algebra, and conversely, any complete Boolean algebra is isomorphic to the projections of some commutative AW*-algebra.

Related Research Articles

In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A over the real or complex numbers that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm. The norm is required to satisfy

In mathematics, specifically in functional analysis, a C-algebra is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra A of continuous linear operators on a complex Hilbert space with two additional properties:

Prime ideal

In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with the zero ideal.

In commutative algebra, the Krull dimension of a commutative ring R, named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules.

Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject.

In mathematics, a von Neumann algebra or W*-algebra is a *-algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. It is a special type of C*-algebra.

In mathematics, the annihilator of a subset S of a module over a ring is the ideal formed by the elements of the ring that give always zero when multiplied by an element of S.

In ring theory, a branch of mathematics, a radical of a ring is an ideal of "not-good" elements of the ring.

In functional analysis, a branch of mathematics, an operator algebra is an algebra of continuous linear operators on a topological vector space, with the multiplication given by the composition of mappings.

In abstract algebra, a matrix ring is a set of matrices with entries in a ring R that form a ring under matrix addition and matrix multiplication. The set of all n × n matrices with entries in R is a matrix ring denoted Mn(R). Some sets of infinite matrices form infinite matrix rings. Any subring of a matrix ring is a matrix ring. Over a rng, one can form matrix rngs.

Free probability is a mathematical theory that studies non-commutative random variables. The "freeness" or free independence property is the analogue of the classical notion of independence, and it is connected with free products. This theory was initiated by Dan Voiculescu around 1986 in order to attack the free group factors isomorphism problem, an important unsolved problem in the theory of operator algebras. Given a free group on some number of generators, we can consider the von Neumann algebra generated by the group algebra, which is a type II1 factor. The isomorphism problem asks whether these are isomorphic for different numbers of generators. It is not even known if any two free group factors are isomorphic. This is similar to Tarski's free group problem, which asks whether two different non-abelian finitely generated free groups have the same elementary theory.

In mathematics, a von Neumann regular ring is a ring R such that for every element a in R there exists an x in R with a = axa. One may think of x as a "weak inverse" of the element a; in general x is not uniquely determined by a. Von Neumann regular rings are also called absolutely flat rings, because these rings are characterized by the fact that every left R-module is flat.

In abstract algebra, a Jordan algebra is a nonassociative algebra over a field whose multiplication satisfies the following axioms:

  1. .

In abstract algebra, the split-quaternions or coquaternions form an algebraic structure introduced by James Cockle in 1849 under the latter name. They form an associative algebra of dimension four over the real numbers.

In mathematics, especially in the fields of representation theory and module theory, a Frobenius algebra is a finite-dimensional unital associative algebra with a special kind of bilinear form which gives the algebras particularly nice duality theories. Frobenius algebras began to be studied in the 1930s by Richard Brauer and Cecil Nesbitt and were named after Ferdinand Frobenius. Tadashi Nakayama discovered the beginnings of a rich duality theory, . Jean Dieudonné used this to characterize Frobenius algebras. Frobenius algebras were generalized to quasi-Frobenius rings, those Noetherian rings whose right regular representation is injective. In recent times, interest has been renewed in Frobenius algebras due to connections to topological quantum field theory.

Nilpotent Lie algebra

In mathematics, a Lie algebra is nilpotent if its lower central series terminates in the zero subalgebra. The lower central series is the sequence of subalgebras

In abstract algebra and functional analysis, Baer rings, Baer *-rings, Rickart rings, Rickart *-rings, and AW*-algebras are various attempts to give an algebraic analogue of von Neumann algebras, using axioms about annihilators of various sets.

In mathematics, especially ring theory, a regular ideal can refer to multiple concepts.

In mathematics, symmetric cones, sometimes called domains of positivity, are open convex self-dual cones in Euclidean space which have a transitive group of symmetries, i.e. invertible operators that take the cone onto itself. By the Koecher–Vinberg theorem these correspond to the cone of squares in finite-dimensional real Euclidean Jordan algebras, originally studied and classified by Jordan, von Neumann & Wigner (1934). The tube domain associated with a symmetric cone is a noncompact Hermitian symmetric space of tube type. All the algebraic and geometric structures associated with the symmetric space can be expressed naturally in terms of the Jordan algebra. The other irreducible Hermitian symmetric spaces of noncompact type correspond to Siegel domains of the second kind. These can be described in terms of more complicated structures called Jordan triple systems, which generalize Jordan algebras without identity.

In mathematics, Jordan operator algebras are real or complex Jordan algebras with the compatible structure of a Banach space. When the coefficients are real numbers, the algebras are called Jordan Banach algebras. The theory has been extensively developed only for the subclass of JB algebras. The axioms for these algebras were devised by Alfsen, Schultz & Størmer (1978). Those that can be realised concretely as subalgebras of self-adjoint operators on a real or complex Hilbert space with the operator Jordan product and the operator norm are called JC algebras. The axioms for complex Jordan operator algebras, first suggested by Irving Kaplansky in 1976, require an involution and are called JB* algebras or Jordan C* algebras. By analogy with the abstract characterisation of von Neumann algebras as C* algebras for which the underlying Banach space is the dual of another, there is a corresponding definition of JBW algebras. Those that can be realised using ultraweakly closed Jordan algebras of self-adjoint operators with the operator Jordan product are called JW algebras. The JBW algebras with trivial center, so-called JBW factors, are classified in terms of von Neumann factors: apart from the exceptional 27 dimensional Albert algebra and the spin factors, all other JBW factors are isomorphic either to the self-adjoint part of a von Neumann factor or to its fixed point algebra under a period two *-anti-automorphism. Jordan operator algebras have been applied in quantum mechanics and in complex geometry, where Koecher's description of bounded symmetric domains using Jordan algebras has been extended to infinite dimensions.

References

  1. 1 2 Kaplansky, Irving (1951). "Projections in Banach algebras". Annals of Mathematics . 53 (2): 235–249. doi:10.2307/1969540.
  2. Berberian, Sterling (1972). Baer *-rings. Springer.
  3. Heunen, Chris; Reyes, Manuel L. (2013). "Diagonalizing matrices over AW*-algebras". Journal of Functional Analysis . 264 (8): 1873–1898. arXiv: 1208.5120 . doi:10.1016/j.jfa.2013.01.022.
  4. Ara, Pere (1989). "Left and right projections are equivalent in Rickart C*-algebras". Journal of Algebra . 120 (2): 433–448. doi:10.1016/0021-8693(89)90209-3.
  5. Wright, J. D. Maitland. "AW*-algebra". Springer.
  6. Ozawa, Masanao (1984). "Nonuniqueness of the cardinality attached to homogeneous AW*-algebras". Proceedings of the American Mathematical Society . 93: 681–684. doi:10.2307/2045544.