In algebra, the nilradical of a commutative ring is the ideal consisting of the nilpotent elements:
It is thus the radical of the zero ideal. If the nilradical is the zero ideal, the ring is called a reduced ring. The nilradical of a commutative ring is the intersection of all prime ideals.
In the non-commutative ring case the same definition does not always work. This has resulted in several radicals generalizing the commutative case in distinct ways; see the article Radical of a ring for more on this.
The nilradical of a Lie algebra is similarly defined for Lie algebras.
The nilradical of a commutative ring is the set of all nilpotent elements in the ring, or equivalently the radical of the zero ideal. This is an ideal because the sum of any two nilpotent elements is nilpotent (by the binomial formula), and the product of any element with a nilpotent element is nilpotent (by commutativity). It can also be characterized as the intersection of all the prime ideals of the ring (in fact, it is the intersection of all minimal prime ideals).
Proposition [1] — Let be a commutative ring. Then the nilradical of equals the intersection of all prime ideals of
Firstly, the nilradical is contained in every prime ideal. Indeed, if one has for some positive integer Since every ideal contains 0 and every prime ideal that contains a product, here contains one of its factors, one deduces that every prime ideal contains
Conversely, let we have to prove that there is a prime ideal that does not contains Consider the set of all ideals that do not contain any power of One has by definition of the nilradical. For every chain of ideals in the union is an ideal that belongs to since otherwise it would contain a power of that must belong to some contradicting the definition of
So, is a partially ordered by set inclusion such that every chain has a least upper bound. Thus, Zorn's lemma applies, and there exists a maximal element . We have to prove that is a prime ideal. If it were not prime there would be two elements and such that and . By maximality of one has and So there exist positive integers and such that and It follows that contadicting the fact that is in . This finishes the proof, since we have proved the existence of a prime ideal that does not contain
A ring is called reduced if it has no nonzero nilpotent. Thus, a ring is reduced if and only if its nilradical is zero. If R is an arbitrary commutative ring, then the quotient of it by the nilradical is a reduced ring and is denoted by .
Since every maximal ideal is a prime ideal, the Jacobson radical — which is the intersection of maximal ideals — must contain the nilradical. A ring R is called a Jacobson ring if the nilradical and Jacobson radical of R/P coincide for all prime ideals P of R. An Artinian ring is Jacobson, and its nilradical is the maximal nilpotent ideal of the ring. In general, if the nilradical is finitely generated (e.g., the ring is Noetherian), then it is nilpotent.
For noncommutative rings, there are several analogues of the nilradical. The lower nilradical (or Baer–McCoy radical, or prime radical) is the analogue of the radical of the zero ideal and is defined as the intersection of the prime ideals of the ring. The analogue of the set of all nilpotent elements is the upper nilradical and is defined as the ideal generated by all nil ideals of the ring, which is itself a nil ideal. The set of all nilpotent elements itself need not be an ideal (or even a subgroup), so the upper nilradical can be much smaller than this set. The Levitzki radical is in between and is defined as the largest locally nilpotent ideal. As in the commutative case, when the ring is Artinian, the Levitzki radical is nilpotent and so is the unique largest nilpotent ideal. Indeed, if the ring is merely Noetherian, then the lower, upper, and Levitzki radical are nilpotent and coincide, allowing the nilradical of any Noetherian ring to be defined as the unique largest (left, right, or two-sided) nilpotent ideal of the ring.
In mathematics, an associative algebraA over a commutative ring K is a ring A together with a ring homomorphism from K into the center of A. This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a module or vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over K. A standard first example of a K-algebra is a ring of square matrices over a commutative ring K, with the usual matrix multiplication.
In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.
In mathematics, and more specifically in ring theory, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group.
In mathematics, more specifically ring theory, the Jacobson radical of a ring R is the ideal consisting of those elements in R that annihilate all simple right R-modules. It happens that substituting "left" in place of "right" in the definition yields the same ideal, and so the notion is left–right symmetric. The Jacobson radical of a ring is frequently denoted by J(R) or rad(R); the former notation will be preferred in this article, because it avoids confusion with other radicals of a ring. The Jacobson radical is named after Nathan Jacobson, who was the first to study it for arbitrary rings in Jacobson 1945.
In mathematics, more specifically in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on algebraic varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies commutative local rings and their modules.
In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings, as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.
Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject.
In ring theory, a branch of mathematics, the radical of an ideal of a commutative ring is another ideal defined by the property that an element is in the radical if and only if some power of is in . Taking the radical of an ideal is called radicalization. A radical ideal is an ideal that is equal to its radical. The radical of a primary ideal is a prime ideal.
In mathematics, an element of a ring is called nilpotent if there exists some positive integer , called the index, such that .
In ring theory, a branch of mathematics, a radical of a ring is an ideal of "not-good" elements of the ring.
In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let A be any Noetherian local ring with unique maximal ideal m, and suppose a1, ..., an is a minimal set of generators of m. Then Krull's principal ideal theorem implies that n ≥ dim A, and A is regular whenever n = dim A.
In ring theory, a branch of mathematics, a ring is called a reduced ring if it has no non-zero nilpotent elements. Equivalently, a ring is reduced if it has no non-zero elements with square zero, that is, x2 = 0 implies x = 0. A commutative algebra over a commutative ring is called a reduced algebra if its underlying ring is reduced.
In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many primary ideals. The theorem was first proven by Emanuel Lasker for the special case of polynomial rings and convergent power series rings, and was proven in its full generality by Emmy Noether.
In mathematics, specifically commutative algebra, a proper ideal Q of a commutative ring A is said to be primary if whenever xy is an element of Q then x or yn is also an element of Q, for some n > 0. For example, in the ring of integers Z, (pn) is a primary ideal if p is a prime number.
In commutative algebra, an element b of a commutative ring B is said to be integral over a subring A of B if b is a root of some monic polynomial over A.
In mathematics, especially in commutative algebra, certain prime ideals called minimal prime ideals play an important role in understanding rings and modules. The notion of height and Krull's principal ideal theorem use minimal prime ideals.
In algebra, the nilradical of a Lie algebra is a nilpotent ideal, which is as large as possible.
In mathematics, more specifically ring theory and the theory of nil ideals, Levitzky's theorem, named after Jacob Levitzki, states that in a right Noetherian ring, every nil one-sided ideal is necessarily nilpotent. Levitzky's theorem is one of the many results suggesting the veracity of the Köthe conjecture, and indeed provided a solution to one of Köthe's questions as described in. The result was originally submitted in 1939 as, and a particularly simple proof was given in.
In mathematics, an overring of an integral domain contains the integral domain, and the integral domain's field of fractions contains the overring. Overrings provide an improved understanding of different types of rings and domains.
In abstract algebra, in particular ring theory, the Akizuki–Hopkins–Levitzki theorem connects the descending chain condition and ascending chain condition in modules over semiprimary rings. A ring R (with 1) is called semiprimary if R/J(R) is semisimple and J(R) is a nilpotent ideal, where J(R) denotes the Jacobson radical. The theorem states that if R is a semiprimary ring and M is an R-module, the three module conditions Noetherian, Artinian and "has a composition series" are equivalent. Without the semiprimary condition, the only true implication is that if M has a composition series, then M is both Noetherian and Artinian.