Dyson series

Last updated

In scattering theory, a part of mathematical physics, the Dyson series, formulated by Freeman Dyson, is a perturbative expansion of the time evolution operator in the interaction picture. Each term can be represented by a sum of Feynman diagrams.

Contents

This series diverges asymptotically, but in quantum electrodynamics (QED) at the second order the difference from experimental data is in the order of 1010. This close agreement holds because the coupling constant (also known as the fine-structure constant) of QED is much less than 1.[ clarification needed ]

Notice that in this article Planck units are used, so that ħ = 1 (where ħ is the reduced Planck constant).

The Dyson operator

Suppose that we have a Hamiltonian H, which we split into a free part H0 and an interacting partVS(t), i.e. H = H0 + VS(t).

We will work in the interaction picture here, that is,

where is time-independent and is the possibly time-dependent interacting part of the Schrödinger picture. To avoid subscripts, stands for in what follows. We choose units such that the reduced Planck constant ħ is 1.

In the interaction picture, the evolution operator U defined by the equation:

is called the Dyson operator.

The evolution operator forms a unitary group with respect to the time parameter therefore we have the group properties:

and from these is possible to derive the time evolution equation of the propagator: [4]

We notice again that in the interaction picture the Hamiltonian is the same as the interaction potential and the equation can also be written in the interaction picture as:

This time evolution equation is not to be confused with the Tomonaga–Schwinger equation

Consequently we can solve formally as:

which is ultimately a type of Volterra equation.

Derivation of the Dyson series

An iterative solution of the Volterra equation above leads to the following Neumann series:

Here we have , so we can say that the fields are time-ordered, and it is useful to introduce an operator called time-ordering operator, defining

We can now try to make this integration simpler. In fact, by the following example:

Assume that K is symmetric in its arguments and define (look at integration limits):

The region of integration can be broken in sub-regions defined by , , etc. Due to the symmetry of K, the integral in each of these sub-regions is the same and equal to by definition. So it is true that

Returning to our previous integral, the following identity holds

Summing up all the terms, we obtain the Dyson series which is a simplified version of the Neumann series above and which includes the time ordered products: [5]

This result is also called Dyson's formula, [6] from here it is also possible to derive back the group laws.

Application on state vectors

One can then express the state vector at time t in terms of the state vector at time t0, for t > t0,

Then, the inner product of an initial state (ti = t0) with a final state (tf = t) in the Schrödinger picture, for tf > ti, is as follows:


If we rewrite this in the Heisenberg Picture, and consider the in and out states at infinity, we can also get the S-matrix: [7]

Note that the time ordering changed given we reversed the scalar product.

See also

Related Research Articles

<span class="mw-page-title-main">Feynman diagram</span> Pictorial representation of the behavior of subatomic particles

In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduced the diagrams in 1948. The interaction of subatomic particles can be complex and difficult to understand; Feynman diagrams give a simple visualization of what would otherwise be an arcane and abstract formula. According to David Kaiser, "Since the middle of the 20th century, theoretical physicists have increasingly turned to this tool to help them undertake critical calculations. Feynman diagrams have revolutionized nearly every aspect of theoretical physics." While the diagrams are applied primarily to quantum field theory, they can also be used in other areas of physics, such as solid-state theory. Frank Wilczek wrote that the calculations that won him the 2004 Nobel Prize in Physics "would have been literally unthinkable without Feynman diagrams, as would [Wilczek's] calculations that established a route to production and observation of the Higgs particle."

The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which are a kind of linear space. Such are distinguished from mathematical formalisms for physics theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces, and operators on these spaces. In brief, values of physical observables such as energy and momentum were no longer considered as values of functions on phase space, but as eigenvalues; more precisely as spectral values of linear operators in Hilbert space.

<span class="mw-page-title-main">Noether's theorem</span> Statement relating differentiable symmetries to conserved quantities

Noether's theorem states that every continuous symmetry of the action of a physical system with conservative forces has a corresponding conservation law. This is the first of two theorems proven by mathematician Emmy Noether in 1915 and published in 1918. The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries of physical space.

The ordered exponential, also called the path-ordered exponential, is a mathematical operation defined in non-commutative algebras, equivalent to the exponential of the integral in the commutative algebras. In practice the ordered exponential is used in matrix and operator algebras.

In quantum mechanics, perturbation theory is a set of approximation schemes directly related to mathematical perturbation for describing a complicated quantum system in terms of a simpler one. The idea is to start with a simple system for which a mathematical solution is known, and add an additional "perturbing" Hamiltonian representing a weak disturbance to the system. If the disturbance is not too large, the various physical quantities associated with the perturbed system can be expressed as "corrections" to those of the simple system. These corrections, being small compared to the size of the quantities themselves, can be calculated using approximate methods such as asymptotic series. The complicated system can therefore be studied based on knowledge of the simpler one. In effect, it is describing a complicated unsolved system using a simple, solvable system.

In physics, the Heisenberg picture or Heisenberg representation is a formulation of quantum mechanics in which the operators incorporate a dependency on time, but the state vectors are time-independent, an arbitrary fixed basis rigidly underlying the theory.

The Laplace–Stieltjes transform, named for Pierre-Simon Laplace and Thomas Joannes Stieltjes, is an integral transform similar to the Laplace transform. For real-valued functions, it is the Laplace transform of a Stieltjes measure, however it is often defined for functions with values in a Banach space. It is useful in a number of areas of mathematics, including functional analysis, and certain areas of theoretical and applied probability.

In physics, the Schrödinger picture or Schrödinger representation is a formulation of quantum mechanics in which the state vectors evolve in time, but the operators are mostly constant with respect to time. This differs from the Heisenberg picture which keeps the states constant while the observables evolve in time, and from the interaction picture in which both the states and the observables evolve in time. The Schrödinger and Heisenberg pictures are related as active and passive transformations and commutation relations between operators are preserved in the passage between the two pictures.

<span class="mw-page-title-main">Path integral formulation</span> Formulation of quantum mechanics

The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.

In physics, the S-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).

In theoretical physics, path-ordering is the procedure that orders a product of operators according to the value of a chosen parameter:

<span class="mw-page-title-main">Schwinger–Dyson equation</span> Equations for correlation functions in QFT

The Schwinger–Dyson equations (SDEs) or Dyson–Schwinger equations, named after Julian Schwinger and Freeman Dyson, are general relations between correlation functions in quantum field theories (QFTs). They are also referred to as the Euler–Lagrange equations of quantum field theories, since they are the equations of motion corresponding to the Green's function. They form a set of infinitely many functional differential equations, all coupled to each other, sometimes referred to as the infinite tower of SDEs.

The adiabatic theorem is a concept in quantum mechanics. Its original form, due to Max Born and Vladimir Fock (1928), was stated as follows:

<span class="mw-page-title-main">Attosecond physics</span> Study of physics on quintillionth-second timescales

Attosecond physics, also known as attophysics, or more generally attosecond science, is a branch of physics that deals with light-matter interaction phenomena wherein attosecond photon pulses are used to unravel dynamical processes in matter with unprecedented time resolution.

In mathematical physics, some approaches to quantum field theory are more popular than others. For historical reasons, the Schrödinger representation is less favored than Fock space methods. In the early days of quantum field theory, maintaining symmetries such as Lorentz invariance, displaying them manifestly, and proving renormalisation were of paramount importance. The Schrödinger representation is not manifestly Lorentz invariant and its renormalisability was only shown as recently as the 1980s by Kurt Symanzik (1981).

<span class="mw-page-title-main">Wigner distribution function</span>

The Wigner distribution function (WDF) is used in signal processing as a transform in time-frequency analysis.

The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.

<span class="mw-page-title-main">Keldysh formalism</span>

In non-equilibrium physics, the Keldysh formalism is a general framework for describing the quantum mechanical evolution of a system in a non-equilibrium state or systems subject to time varying external fields. Historically, it was foreshadowed by the work of Julian Schwinger and proposed almost simultaneously by Leonid Keldysh and, separately, Leo Kadanoff and Gordon Baym. It was further developed by later contributors such as O. V. Konstantinov and V. I. Perel.

Stochastic mechanics is a framework for describing the dynamics of particles that are subjected to an intrinsic random processes as well as various external forces. The framework provides a derivation of the diffusion equations associated to these stochastic particles. It is best known for its derivation of the Schrödinger equation as the Kolmogorov equation for a certain type of conservative diffusion, and for this purpose it is also referred to as stochastic quantum mechanics.

In quantum mechanics, dynamical pictures are the multiple equivalent ways to mathematically formulate the dynamics of a quantum system.

References

  1. Sakurai, Modern Quantum mechanics, 2.1.10
  2. Sakurai, Modern Quantum mechanics, 2.1.12
  3. Sakurai, Modern Quantum mechanics, 2.1.11
  4. Sakurai, Modern Quantum mechanics, 2.1 pp. 69-71
  5. Sakurai, Modern Quantum Mechanics, 2.1.33, pp. 72
  6. Tong 3.20, http://www.damtp.cam.ac.uk/user/tong/qft/qft.pdf
  7. Dyson (1949), "The S-matrix in quantum electrodynamics", Physical Review