Trans-Planckian problem

Last updated

In black hole physics and inflationary cosmology, the trans-Planckian problem is the problem of the appearance of quantities beyond the Planck scale, which raise doubts on the physical validity of some results in these two areas, since one expects the physical laws to suffer radical modifications beyond the Planck scale. [1]

In black hole physics, the original derivation of Hawking radiation involved field modes that, near the black hole horizon, have arbitrarily high frequencies—in particular, higher than the inverse Planck time, although these do not appear in the final results. A number of different alternative derivations have been proposed in order to overcome this problem.

The trans-Planckian problem can be conveniently considered in the framework of sonic black holes, condensed matter systems which can be described in a similar way as real black holes. In these systems, the analogue of the Planck scale is the interatomic scale, where the continuum description loses its validity. One can study whether in these systems the analogous process to Hawking radiation still occurs despite the short-scale cutoff represented by the interatomic distance.

The trans-Planckian problem also appears in inflationary cosmology. The cosmological scales that we nowadays observe correspond to length scales smaller than the Planck length at the onset of inflation. [1]

Trans-Planckian problem in Hawking radiation

The trans-Planckian problem is the issue that Hawking's original calculation includes quantum particles where the wavelength becomes shorter than the Planck length near the black hole's horizon. This is due to the peculiar behavior there, where time stops as measured from far away. A particle emitted from a black hole with a finite frequency, if traced back to the horizon, must have had an infinite frequency, and therefore a trans-Planckian wavelength.

The Unruh effect and the Hawking effect both talk about field modes in the superficially stationary spacetime that change frequency relative to other coordinates which are regular across the horizon. This is necessarily so, since to stay outside a horizon requires acceleration which constantly Doppler shifts the modes.

An outgoing Hawking radiated photon, if the mode is traced back in time, has a frequency which diverges from that which it has at great distance, as it gets closer to the horizon, which requires the wavelength of the photon to "scrunch up" infinitely at the horizon of the black hole. In a maximally extended external Schwarzschild solution, that photon's frequency stays regular only if the mode is extended back into the past region where no observer can go. That region seems to be unobservable and is physically suspect, so Hawking used a black hole solution without a past region which forms at a finite time in the past. In that case, the source of all the outgoing photons can be identified: a microscopic point right at the moment that the black hole first formed. [ citation needed ]

The quantum fluctuations at that tiny point, in Hawking's original calculation, contain all the outgoing radiation. The modes that eventually contain the outgoing radiation at long times are redshifted by such a huge amount by their long sojourn next to the event horizon, that they start off as modes with a wavelength much shorter than the Planck length. Since the laws of physics at such short distances are unknown, some find Hawking's original calculation unconvincing. [2] [3] [4] [5]

The trans-Planckian problem is nowadays mostly considered a mathematical artifact of horizon calculations. The same effect occurs for regular matter falling onto a white hole solution. Matter which falls on the white hole accumulates on it, but has no future region into which it can go. Tracing the future of this matter, it is compressed onto the final singular endpoint of the white hole evolution, into a trans-Planckian region. The reason for these types of divergences is that modes which end at the horizon from the point of view of outside coordinates are singular in frequency there. The only way to determine what happens classically is to extend in some other coordinates that cross the horizon.

There exist alternative physical pictures which give the Hawking radiation in which the trans-Planckian problem is addressed. [6] The key point is that similar trans-Planckian problems occur when the modes occupied with Unruh radiation are traced back in time. [7] In the Unruh effect, the magnitude of the temperature can be calculated from ordinary Minkowski field theory, and is not controversial.

Notes

  1. 1 2 Brandenberger, Robert (2011). "Introduction to early universe cosmology" (PDF). Proceedings of Science . arXiv: 1103.2271 . Bibcode:2011arXiv1103.2271B.
  2. Helfer, A. D. (2003). "Do black holes radiate?". Reports on Progress in Physics. 66 (6): 943–1008. arXiv: gr-qc/0304042 . Bibcode:2003RPPh...66..943H. doi:10.1088/0034-4885/66/6/202. S2CID   16668175.
  3. 't Hooft, G. (1985). "On the quantum structure of a black hole". Nuclear Physics B. 256: 727–745. Bibcode:1985NuPhB.256..727T. doi:10.1016/0550-3213(85)90418-3.
  4. Jacobson, T. (1991). "Black-hole evaporation and ultrashort distances". Physical Review D. 44 (6): 1731–1739. Bibcode:1991PhRvD..44.1731J. doi:10.1103/PhysRevD.44.1731. PMID   10014053.
  5. Brout, R.; Massar, S.; Parentani, R.; Spindel, P. (1995). "Hawking radiation without trans-Planckian frequencies". Physical Review D. 52 (8): 4559–4568. arXiv: hep-th/9506121 . Bibcode:1995PhRvD..52.4559B. doi:10.1103/PhysRevD.52.4559. PMID   10019680. S2CID   26432764.
  6. Giddings, Steven B. (2016). "Hawking radiation, the Stefan–Boltzmann law, and unitarization". Physics Letters B. 754: 39–42. arXiv: 1511.08221 . Bibcode:2016PhLB..754...39G. doi:10.1016/j.physletb.2015.12.076. S2CID   119250586.
  7. For an alternative derivation and more detailed discussion of Hawking radiation as a form of Unruh radiation see de Witt, Bryce (1980). "Quantum gravity: the new synthesis". In Hawking, S.; Israel, W. (eds.). General Relativity: An Einstein Centenary. p. 696. ISBN   0-521-29928-4.

Related Research Articles

Black hole Astronomical object that has a very strong gravity such that nothing can escape

A black hole is a region of spacetime where gravity is so strong that nothing – no particles or even electromagnetic radiation such as light – can escape from it. The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of no escape is called the event horizon. Although it has a great effect on the fate and circumstances of an object crossing it, it has no locally detectable features according to general relativity. In many ways, a black hole acts like an ideal black body, as it reflects no light. Moreover, quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is of the order of billionths of a kelvin for stellar black holes, making it essentially impossible to observe directly.

Inflation (cosmology) Theory of rapid universe expansion

In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the early universe. The inflationary epoch lasted from 10−36 seconds after the conjectured Big Bang singularity to some time between 10−33 and 10−32 seconds after the singularity. Following the inflationary period, the universe continued to expand, but at a slower rate. The acceleration of this expansion due to dark energy began after the universe was already over 7.7 billion years old.

Cosmic microwave background Electromagnetic radiation as a remnant from an early stage of the universe in Big Bang cosmology

In Big Bang cosmology the cosmic microwave background is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all space. It is an important source of data on the early universe because it is the oldest electromagnetic radiation in the universe, dating to the epoch of recombination when the first atoms were formed. With a traditional optical telescope, the space between stars and galaxies is completely dark. However, a sufficiently sensitive radio telescope shows a faint background noise, or glow, almost uniform, that is not associated with any star, galaxy, or other object. This glow is strongest in the microwave region of the radio spectrum. The accidental discovery of the CMB in 1965 by American radio astronomers Arno Penzias and Robert Wilson was the culmination of work initiated in the 1940s, and earned the discoverers the 1978 Nobel Prize in Physics.

The holographic principle is a tenet of string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region—such as a light-like boundary like a gravitational horizon. First proposed by Gerard 't Hooft, it was given a precise string-theory interpretation by Leonard Susskind, who combined his ideas with previous ones of 't Hooft and Charles Thorn. Leonard Susskind said, “The three-dimensional world of ordinary experience––the universe filled with galaxies, stars, planets, houses, boulders, and people––is a hologram, an image of reality coded on a distant two-dimensional (2D) surface." As pointed out by Raphael Bousso, Thorn observed in 1978 that string theory admits a lower-dimensional description in which gravity emerges from it in what would now be called a holographic way. The prime example of holography is the AdS/CFT correspondence.

Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics, and where quantum effects cannot be ignored, such as in the vicinity of black holes or similar compact astrophysical objects, and where the effects of gravity are strong, such as neutron stars.

Wave–particle duality is the concept in quantum mechanics that every particle or quantum entity may be described as either a particle or a wave. It expresses the inability of the classical concepts "particle" or "wave" to fully describe the behaviour of quantum-scale objects. As Albert Einstein wrote:

It seems as though we must use sometimes the one theory and sometimes the other, while at times we may use either. We are faced with a new kind of difficulty. We have two contradictory pictures of reality; separately neither of them fully explains the phenomena of light, but together they do.

Hawking radiation Thermal radiation emitted outside the event horizon of a black hole

Hawking radiation is thermal radiation that is theorized to be released outside a black hole's event horizon because of relativistic quantum effects. It is named after the physicist Stephen Hawking, who developed a theoretical argument for its existence in 1974. Hawking radiation is a purely kinematic effect that is generic to Lorentzian geometries containing event horizons or local apparent horizons.

Black hole thermodynamics Area of study

In physics, black hole thermodynamics is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black-hole event horizons. As the study of the statistical mechanics of black-body radiation led to the development of the theory of quantum mechanics, the effort to understand the statistical mechanics of black holes has had a deep impact upon the understanding of quantum gravity, leading to the formulation of the holographic principle.

The Immirzi parameter is a numerical coefficient appearing in loop quantum gravity (LQG), a nonperturbative theory of quantum gravity. The Immirzi parameter measures the size of the quantum of area in Planck units. As a result, its value is currently fixed by matching the semiclassical black hole entropy, as calculated by Stephen Hawking, and the counting of microstates in loop quantum gravity.

In theoretical physics, an extremal black hole is a black hole with the minimal possible mass that can be compatible with a given charge and angular momentum. In other words, this is the smallest possible black hole that can exist while rotating at a given fixed constant speed with some fixed charge.

The Unruh effect is a kinematic prediction of quantum field theory that an accelerating observer will observe a thermal bath, like blackbody radiation, whereas an inertial observer would observe none. In other words, the background appears to be warm from an accelerating reference frame; in layman's terms, an accelerating thermometer in empty space, removing any other contribution to its temperature, will record a non-zero temperature, just from its acceleration. Heuristically, for a uniformly accelerating observer, the ground state of an inertial observer is seen as a mixed state in thermodynamic equilibrium with a non-zero temperature bath.

Micro black holes, also called mini black holes or quantum mechanical black holes, are hypothetical tiny black holes, for which quantum mechanical effects play an important role. The concept that black holes may exist that are smaller than stellar mass was introduced in 1971 by Stephen Hawking.

Black hole information paradox Mystery of disappearance of information in a black hole

The black hole information paradox is a puzzle resulting from the combination of quantum mechanics and general relativity. In the 1970s Stephen Hawking found that an isolated black hole would emit radiation at a temperature controlled by its mass, charge and angular momentum. Hawking also argued that the details of the radiation would be independent of the initial state of the black hole. If so, this would allow physical information to permanently disappear in a black hole, allowing many physical states to evolve into the same state. However, this violates a core precept of both classical and quantum physics—that, in principle, the state of a system at one point in time should determine its value at any other time. Specifically, in quantum mechanics the state of the system is encoded by its wave function. The evolution of the wave function is determined by a unitary operator, and unitarity implies that the wave function at any instant of time can be used to determine the wave function either in the past or the future.

Quantum field theory in curved spacetime Extension of quantum field theory to curved spacetime

In theoretical physics, quantum field theory in curved spacetime (QFTCS) is an extension of quantum field theory from Minkowski spacetime to a general curved spacetime. This theory treats spacetime as a fixed, classical background, while giving a quantum-mechanical description of the matter and energy propagating through that spacetime. A general prediction of this theory is that particles can be created by time-dependent gravitational fields, or by time-independent gravitational fields that contain horizons. The most famous example of the latter is the phenomenon of Hawking radiation emitted by black holes.

In physics, there is a speculative hypothesis that, if there were a black hole with the same mass, charge and angular momentum as an electron, it would share other properties of the electron. Most notably, Brandon Carter showed in 1968 that the magnetic moment of such an object would match that of an electron. This is interesting because calculations ignoring special relativity and treating the electron as a small rotating sphere of charge give a magnetic moment roughly twice smaller than the experimental value.

A sonic black hole, sometimes called a dumb hole or acoustic black hole, is a phenomenon in which phonons are unable to escape from a region of a fluid that is flowing more quickly than the local speed of sound. They are called sonic, or acoustic, black holes because these trapped phonons are analogous to light in astrophysical (gravitational) black holes. Physicists are interested in them because they have many properties similar to astrophysical black holes and, in particular, emit a phononic version of Hawking radiation. This Hawking radiation can be spontaneously created by quantum vacuum fluctuations, in close analogy with Hawking radiation from a real black hole. On the other hand, the Hawking radiation can be stimulated in a classical process. The boundary of a sonic black hole, at which the flow speed changes from being greater than the speed of sound to less than the speed of sound, is called the event horizon.

Black hole complementarity is a conjectured solution to the black hole information paradox, proposed by Leonard Susskind, Larus Thorlacius, and Gerard 't Hooft.

In particle physics and physical cosmology, Planck units are a set of units of measurement defined exclusively in terms of four universal physical constants, in such a manner that these physical constants take on the numerical value of 1 when expressed in terms of these units. Originally proposed in 1899 by German physicist Max Planck, these units are a system of natural units because their definition is based on properties of nature, more specifically the properties of free space, rather than a choice of prototype object. They are relevant in research on unified theories such as quantum gravity.

A black hole firewall is a hypothetical phenomenon where an observer falling into a black hole encounters high-energy quanta at the event horizon. The "firewall" phenomenon was proposed in 2012 by physicists Ahmed Almheiri, Donald Marolf, Joseph Polchinski, and James Sully as a possible solution to an apparent inconsistency in black hole complementarity. The proposal is sometimes referred to as the AMPS firewall, an acronym for the names of the authors of the 2012 paper. The potential inconsistency pointed out by AMPS had been pointed out earlier by Samir Mathur who used the argument in favour of the fuzzball proposal. The use of a firewall to resolve this inconsistency remains controversial, with physicists divided as to the solution to the paradox.

In quantum information, the Hayden–Preskill thought experiment is a thought experiment that investigates the black hole information paradox by hypothesizing on how long it takes to decode information thrown in a black hole from its Hawking radiation.