White hole

Last updated

In general relativity, a white hole is a hypothetical region of spacetime and singularity that cannot be entered from the outside, although energy-matter, light and information can escape from it. In this sense, it is the reverse of a black hole, from which energy-matter, light and information cannot escape. White holes appear in the theory of eternal black holes. In addition to a black hole region in the future, such a solution of the Einstein field equations has a white hole region in its past. [1] This region does not exist for black holes that have formed through gravitational collapse, however, nor are there any observed physical processes through which a white hole could be formed.

Contents

Supermassive black holes (SMBHs) are theoretically predicted to be at the center of every galaxy and that possibly, a galaxy cannot form without one. Stephen Hawking [2] and others have proposed that these supermassive black holes spawn a supermassive white hole. [3]

Overview

Like black holes, white holes have properties such as mass, charge, and angular momentum. They attract matter like any other mass, but objects falling towards a white hole would never actually reach the white hole's event horizon (though in the case of the maximally extended Schwarzschild solution, discussed below, the white hole event horizon in the past becomes a black hole event horizon in the future, so any object falling towards it will eventually reach the black hole horizon). Imagine a gravitational field, without a surface. Acceleration due to gravity is the greatest on the surface of any body. But since black holes lack a surface, acceleration due to gravity increases exponentially, but never reaches a final value as there is no considered surface in a singularity.

In quantum mechanics, the black hole emits Hawking radiation and so it can come to thermal equilibrium with a gas of radiation (not compulsory). Because a thermal-equilibrium state is time-reversal-invariant, Stephen Hawking argued that the time reversal of a black hole in thermal equilibrium results in a white hole in thermal equilibrium (each absorbing and emitting energy to equivalent degrees). [4] [ further explanation needed ] Consequently, this may imply that black holes and white holes are reciprocal in structure, wherein the Hawking radiation from an ordinary black hole is identified with a white hole's emission of energy and matter. Hawking's semi-classical argument is reproduced in a quantum mechanical AdS/CFT treatment, [5] where a black hole in anti-de Sitter space is described by a thermal gas in a gauge theory, whose time reversal is the same as itself.

Origin

A diagram of the structure of the maximally extended black hole spacetime. The horizontal direction is space and the vertical direction is time. Krukdiagram.svg
A diagram of the structure of the maximally extended black hole spacetime. The horizontal direction is space and the vertical direction is time.

The possibility of the existence of white holes was put forward by Soviet cosmologist Igor Novikov in 1964, [6] developed by Nikolai Kardashev. [7] White holes are predicted as part of a solution to the Einstein field equations known as the maximally extended version of the Schwarzschild metric [ clarification needed ] describing an eternal black hole with no charge and no rotation. Here, "maximally extended" refers to the idea that the spacetime should not have any "edges": for any possible trajectory of a free-falling particle (following a geodesic) in the spacetime, it should be possible to continue this path arbitrarily far into the particle's future, unless the trajectory hits a gravitational singularity like the one at the center of the black hole's interior. In order to satisfy this requirement, it turns out that in addition to the black hole interior region that particles enter when they fall through the event horizon from the outside, there must be a separate white hole interior region, which allows us to extrapolate the trajectories of particles that an outside observer sees rising up away from the event horizon. For an observer outside using Schwarzschild coordinates, infalling particles take an infinite time to reach the black hole horizon infinitely far in the future, while outgoing particles that pass the observer have been traveling outward for an infinite time since crossing the white hole horizon infinitely far in the past (however, the particles or other objects experience only a finite proper time between crossing the horizon and passing the outside observer). The black hole/white hole appears "eternal" from the perspective of an outside observer, in the sense that particles traveling outward from the white hole interior region can pass the observer at any time, and particles traveling inward, which will eventually reach the black hole interior region can also pass the observer at any time.

Just as there are two separate interior regions of the maximally extended spacetime, there are also two separate exterior regions, sometimes called two different "universes", with the second universe allowing us to extrapolate some possible particle trajectories in the two interior regions. This means that the interior black-hole region can contain a mix of particles that fell in from either universe (and thus an observer who fell in from one universe might be able to see light that fell in from the other one), and likewise particles from the interior white-hole region can escape into either universe. All four regions can be seen in a spacetime diagram that uses Kruskal–Szekeres coordinates (see figure). [8]

In this spacetime, it is possible to come up with coordinate systems such that if you pick a hypersurface of constant time (a set of points that all have the same time coordinate, such that every point on the surface has a space-like separation, giving what is called a 'space-like surface') and draw an "embedding diagram" depicting the curvature of space at that time, the embedding diagram will look like a tube connecting the two exterior regions, known as an "Einstein-Rosen bridge" or Schwarzschild wormhole. [8] Depending on where the space-like hypersurface is chosen, the Einstein-Rosen bridge can either connect two black hole event horizons in each universe (with points in the interior of the bridge being part of the black hole region of the spacetime), or two white hole event horizons in each universe (with points in the interior of the bridge being part of the white hole region). It is impossible to use the bridge to cross from one universe to the other, however, because it is impossible to enter a white hole event horizon from the outside, and anyone entering a black hole horizon from either universe will inevitably hit the black hole singularity.

Note that the maximally extended Schwarzschild metric describes an idealized black hole/white hole that exists eternally from the perspective of external observers; a more realistic black hole that forms at some particular time from a collapsing star would require a different metric. When the infalling stellar matter is added to a diagram of a black hole's history, it removes the part of the diagram corresponding to the white hole interior region. [9] But because the equations of general relativity are time-reversible – they exhibit Time reversal symmetry – general relativity must also allow the time-reverse of this type of "realistic" black hole that forms from collapsing matter. The time-reversed case would be a white hole that has existed since the beginning of the universe, and that emits matter until it finally "explodes" and disappears. [10] Despite the fact that such objects are permitted theoretically, they are not taken as seriously as black holes by physicists, since there would be no processes that would naturally lead to their formation; they could exist only if they were built into the initial conditions of the Big Bang. [10] Additionally, it is predicted that such a white hole would be highly "unstable" in the sense that if any small amount of matter fell towards the horizon from the outside, this would prevent the white hole's explosion as seen by distant observers, with the matter emitted from the singularity never able to escape the white hole's gravitational radius. [11]

Properties

Depending on the type of black hole solution considered, there are several types of white holes. In the case of the Schwarzschild black hole mentioned above, a geodesic coming out of a white hole comes from the "gravitational singularity" it contains. In the case of a black hole possessing an electric charge ψ ** Ώ ** ώ (Reissner-Nordström black hole) or an angular momentum, then the white hole happens to be the "exit door" of a black hole existing in another universe. Such a black hole - white hole configuration is called a wormhole. In both cases, however, it is not possible to reach the region "in" the white hole, so the behavior of it - and, in particular, what may come out of it - is completely impossible to predict. In this sense, a white hole is a configuration according to which the evolution of the universe cannot be predicted, because it is not deterministic. A "bare singularity" is another example of a non-deterministic configuration, but does not have the status of a white hole, however, because there is no region inaccessible from a given region. In its basic conception, the Big Bang can be seen as a naked singularity in outer space, but does not correspond to a white hole. [12]

Physical relevance

In its mode of formation, a black hole comes from a residue of a massive star whose core contracts until it turns into a black hole. Such a configuration is not static: we start from a massive and extended body which contracts to give a black hole. The black hole therefore does not exist for all eternity, and there is no corresponding white hole.

To be able to exist, a white hole must either arise from a physical process leading to its formation, or be present from the creation of the universe. None of these solutions appears satisfactory: there is no known astrophysical process that can lead to the formation of such a configuration, and imposing it from the creation of the universe amounts to assuming a very specific set of initial conditions which has no concrete motivation. Also the existence of white holes seems difficult to consider.

In view of the enormous quantities radiated by quasars, whose luminosity makes it possible to observe them from several billion light-years away, it had been assumed that they were the seat of exotic physical phenomena such as a white hole, or a phenomenon of continuous creation of matter (see the article on the steady state theory). These ideas are now abandoned, the observed properties of quasars being very well explained by those of an accretion disk in the center of which is a supermassive black hole. [12]

Big Bang/Supermassive White Hole

A view of black holes first proposed in the late 1980s might be interpreted as shedding some light on the nature of classical white holes. Some researchers have proposed that when a black hole forms, a Big Bang may occur at the core/singularity, which would create a new universe that expands outside of the parent universe. [13] [14] [15]

The Einstein–Cartan–Sciama–Kibble theory of gravity extends general relativity by removing a constraint of the symmetry of the affine connection and regarding its antisymmetric part, the torsion tensor, as a dynamical variable. Torsion naturally accounts for the quantum-mechanical, intrinsic angular momentum (spin) of matter. According to general relativity, the gravitational collapse of a sufficiently compact mass forms a singular black hole. In the Einstein–Cartan theory, however, the minimal coupling between torsion and Dirac spinors generates a repulsive spin–spin interaction that is significant in fermionic matter at extremely high densities. Such an interaction prevents the formation of a gravitational singularity. Instead, the collapsing matter on the other side of the event horizon reaches an enormous but finite density and rebounds, forming a regular Einstein–Rosen bridge. [16] The other side of the bridge becomes a new, growing baby universe. For observers in the baby universe, the parent universe appears as the only white hole. Accordingly, the observable universe is the Einstein–Rosen interior of a black hole existing as one of possibly many inside a larger universe. The Big Bang was a nonsingular Big Bounce at which the observable universe had a finite, minimum scale factor. [17]

Shockwave cosmology, proposed by Joel Smoller and Blake Temple in 2003, has the “big bang” as an explosion inside a black hole, producing the expanding volume of space and matter that includes the observable universe. [18] This black hole eventually becomes a white hole as the matter density reduces with the expansion. A related theory gives an alternative to dark energy. [19]

A 2012 paper argues that the Big Bang itself is a white hole. [20] It further suggests that the emergence of a white hole, which was named a "Small Bang", is spontaneous—all the matter is ejected at a single pulse. Thus, unlike black holes, white holes cannot be continuously observed; rather, their effects can be detected only around the event itself. The paper even proposed identifying a new group of gamma-ray bursts with white holes.

Various hypotheses

Unlike black holes for which there is a well-studied physical process, gravitational collapse (which gives rise to black holes when a star somewhat more massive than the sun exhausts its nuclear "fuel"), there is no clear analogous process that leads reliably to the production of white holes. Although some hypotheses have been put forward:

At present, very few scientists believe in the existence of white holes and it is considered only a mathematical exercise with no real-world counterpart. [27]

See also

Related Research Articles

<span class="mw-page-title-main">Black hole</span> Object that has a no-return boundary

A black hole is a region of spacetime where gravity is so strong that nothing, including light and other electromagnetic waves, is capable of possessing enough energy to escape it. Einstein's theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of no escape is called the event horizon. A black hole has a great effect on the fate and circumstances of an object crossing it, but it has no locally detectable features according to general relativity. In many ways, a black hole acts like an ideal black body, as it reflects no light. Moreover, quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is of the order of billionths of a kelvin for stellar black holes, making it essentially impossible to observe directly.

<span class="mw-page-title-main">General relativity</span> Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations.

A wormhole is a hypothetical structure connecting disparate points in spacetime, and is based on a special solution of the Einstein field equations.

<span class="mw-page-title-main">Gravitational singularity</span> Condition in which spacetime itself breaks down

A gravitational singularity, spacetime singularity or simply singularity is a condition in which gravity is predicted to be so intense that spacetime itself would break down catastrophically. As such, a singularity is by definition no longer part of the regular spacetime and cannot be determined by "where" or "when". Gravitational singularities exist at a junction between general relativity and quantum mechanics; therefore, the properties of the singularity cannot be described without an established theory of quantum gravity. Trying to find a complete and precise definition of singularities in the theory of general relativity, the current best theory of gravity, remains a difficult problem. A singularity in general relativity can be defined by the scalar invariant curvature becoming infinite or, better, by a geodesic being incomplete.

Timeline of black hole physics

<i>A Brief History of Time</i> 1988 book by Stephen Hawking

A Brief History of Time: From the Big Bang to Black Holes is a book on theoretical cosmology by English physicist Stephen Hawking. It was first published in 1988. Hawking wrote the book for readers who had no prior knowledge of physics.

The Schwarzschild radius or the gravitational radius is a physical parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius defining the event horizon of a Schwarzschild black hole. It is a characteristic radius associated with any quantity of mass. The Schwarzschild radius was named after the German astronomer Karl Schwarzschild, who calculated this exact solution for the theory of general relativity in 1916.

The Penrose–Hawking singularity theorems are a set of results in general relativity that attempt to answer the question of when gravitation produces singularities. The Penrose singularity theorem is a theorem in semi-Riemannian geometry and its general relativistic interpretation predicts a gravitational singularity in black hole formation. The Hawking singularity theorem is based on the Penrose theorem and it is interpreted as a gravitational singularity in the Big Bang situation. Penrose was awarded the Nobel Prize in Physics in 2020 "for the discovery that black hole formation is a robust prediction of the general theory of relativity", which he shared with Reinhard Genzel and Andrea Ghez.

In theoretical physics, the Einstein–Cartan theory, also known as the Einstein–Cartan–Sciama–Kibble theory, is a classical theory of gravitation one of several alternatives to general relativity. The theory was first proposed by Élie Cartan in 1922.

<span class="mw-page-title-main">Penrose diagram</span> Two-dimensional diagram capturing the causal relations between different points in spacetime

In theoretical physics, a Penrose diagram is a two-dimensional diagram capturing the causal relations between different points in spacetime through a conformal treatment of infinity. It is an extension of the Minkowski diagram of special relativity where the vertical dimension represents time, and the horizontal dimension represents a space dimension. Using this design, all light rays take a 45° path . Locally, the metric on a Penrose diagram is conformally equivalent to the metric of the spacetime depicted. The conformal factor is chosen such that the entire infinite spacetime is transformed into a Penrose diagram of finite size, with infinity on the boundary of the diagram. For spherically symmetric spacetimes, every point in the Penrose diagram corresponds to a 2-dimensional sphere .

Micro black holes, also called mini black holes or quantum mechanical black holes, are hypothetical tiny black holes, for which quantum mechanical effects play an important role. The concept that black holes may exist that are smaller than stellar mass was introduced in 1971 by Stephen Hawking.

Fuzzballs are hypothetical objects in superstring theory, intended to provide a fully quantum description of the black holes predicted by general relativity.

<span class="mw-page-title-main">Kruskal–Szekeres coordinates</span> Coordinate system for the Schwarzschild geometry

In general relativity, Kruskal–Szekeres coordinates, named after Martin Kruskal and George Szekeres, are a coordinate system for the Schwarzschild geometry for a black hole. These coordinates have the advantage that they cover the entire spacetime manifold of the maximally extended Schwarzschild solution and are well-behaved everywhere outside the physical singularity. There is no misleading coordinate singularity at the horizon.

A ring singularity or ringularity is the gravitational singularity of a rotating black hole, or a Kerr black hole, that is shaped like a ring.

The following outline is provided as an overview of and topical guide to black holes:

In general relativity, the de Sitter–Schwarzschild solution describes a black hole in a causal patch of de Sitter space. Unlike a flat-space black hole, there is a largest possible de Sitter black hole, which is the Nariai spacetime. The Nariai limit has no singularities, the cosmological and black hole horizons have the same area, and they can be mapped to each other by a discrete reflection symmetry in any causal patch.

<span class="mw-page-title-main">Nikodem Popławski</span> Polish physicist

Nikodem Janusz Popławski is a Polish theoretical physicist, most widely noted for the hypothesis that every black hole could be a doorway to another universe and that the universe was formed within a black hole which itself exists in a larger universe. This hypothesis was listed by National Geographic and Science magazines among their top ten discoveries of 2010.

In astrophysics, an event horizon is a boundary beyond which events cannot affect an observer. Wolfgang Rindler coined the term in the 1950s.

A black hole cosmology is a cosmological model in which the observable universe is the interior of a black hole. Such models were originally proposed by theoretical physicist Raj Pathria, and concurrently by mathematician I. J. Good.

References

  1. Carroll, Sean M. (2004). Spacetime and Geometry (5.7 ed.). Addison-Wesley. ISBN   0-8053-8732-3.
  2. Hawking and Penrose, The Nature of Space and Time (Princeton, 1996)
  3. "Is the Big Bang a black hole?". math.ucr.edu.
  4. Hawking, S. W. (1976). "Black Holes and Thermodynamics". Physical Review D . 13 (2): 191–197. Bibcode:1976PhRvD..13..191H. doi:10.1103/PhysRevD.13.191.
  5. Klebanov, Igor R. (19 May 2006). "TASI lectures: Introduction to the AdS/CFT correspondence". Strings, Branes and Gravity. pp. 615–650. arXiv: hep-th/0009139 . Bibcode:2001sbg..conf..615K. doi:10.1142/9789812799630_0007. ISBN   978-981-02-4774-4. S2CID   14783311.{{cite book}}: |journal= ignored (help)
  6. Старобинский, А. А. (1988). "БЁЛАЯ ДЫРА" [White hole]. In ПРОХОРОВ, А.М. (ed.). ФИЗИЧЕСКАЯ ЭНЦИКЛОПЕДИЯ (in Russian). Vol. 1. Москва: Советская энциклопедия. p. 184.
  7. Вселенная, жизнь, разум (in Russian). Наука. 1976. p. 310.
  8. 1 2 Andrew Hamilton. "White Holes and Wormholes". Archived from the original on 27 September 2011. Retrieved 12 October 2011.
  9. Andrew Hamilton. "Collapse to a black hole" . Retrieved 12 October 2011.
  10. 1 2 Wheeler, J. Craig (2007). Cosmic Catastrophes: Exploding Stars, Black Holes, and Mapping the Universe . Cambridge University Press. pp.  197–198. ISBN   978-0-521-85714-7.
  11. Frolov, Valeri P.; Igor D. Novikov (1998). Black Hole Physics: Basic Concepts and New Developments. Springer. pp.  580–581. ISBN   978-0-7923-5145-0.
  12. 1 2 "Trou blanc : définition et explications". Techno-Science.net.
  13. E. Fahri & A. H. Guth (1987). "An Obstacle to Creating a Universe in the Laboratory" (PDF). Physics Letters B . 183 (2): 149–155. Bibcode:1987PhLB..183..149F. doi:10.1016/0370-2693(87)90429-1.
  14. Nikodem J. Popławski (2010). "Radial motion into an Einstein–Rosen bridge". Physics Letters B . 687 (2–3): 110–113. arXiv: 0902.1994 . Bibcode:2010PhLB..687..110P. doi:10.1016/j.physletb.2010.03.029. S2CID   5947253.
  15. "Every Black Hole Contains Another Universe?". National Geographic News . 12 April 2010. Archived from the original on 27 August 2019.
  16. N. J. Popławski (2010). "Cosmology with torsion: An alternative to cosmic inflation". Physics Letters B . 694 (3): 181–185. arXiv: 1007.0587 . Bibcode:2010PhLB..694..181P. doi:10.1016/j.physletb.2010.09.056.
  17. N. Popławski (2012). "Nonsingular, big-bounce cosmology from spinor-torsion coupling". Physical Review D . 85 (10): 107502. arXiv: 1111.4595 . Bibcode:2012PhRvD..85j7502P. doi:10.1103/PhysRevD.85.107502. S2CID   118434253.
  18. "Did cosmos begin as a black hole?". NBC News. 17 September 2003. Retrieved 23 March 2024.
  19. Clara Moskowitz (17 August 2009). "'Big Wave' Theory Offers Alternative to Dark Energy". Space.com. Retrieved 23 March 2024.
  20. A. Retter & S. Heller (2012). "The revival of white holes as Small Bangs". New Astronomy . 17 (2): 73–75. arXiv: 1105.2776 . Bibcode:2012NewA...17...73R. doi:10.1016/j.newast.2011.07.003. S2CID   118505127.
  21. Sitio oficial de la Nasa en donde se explica la cuestión: los cuásares fueron supuestos como agujeros blancos pero la hipótesis quedó descartada
  22. Alon Retter; Shlomo Heller (17 July 2011). "The Revival of White Holes as Small Bangs". New Astronomy. 17 (2) (New Astronomy ed.): 73–75. arXiv: 1105.2776 . Bibcode:2012NewA...17...73R. doi:10.1016/j.newast.2011.07.003. S2CID   118505127.
  23. Леонид Попов (27 May 2011). "Израильтяне нашли белую дыру". Archived from the original on 27 May 2012. Retrieved 3 May 2012.
  24. J. E. Madriz Aguilar, C. Moreno, M. Bellini. "The primordial explosion of a false white hole from a 5D vacuum". Physics Letters. B728, 244 (2014)..
  25. Descubren nuevas evidencias de la transición al blanco de los agujeros negros, Universidad Complutense de Madrid.
  26. Carlos Barceló, Raúl Carballo Rubio y Luis J. Garay. “Exponential fading to white of black holes in quantum gravity”. Classical and Quantum Gravity. Volume 34. Number 10.2017. DOI: 10.1088/1361-6382/aa6962.
  27. "¿Hemos detectado ya agujeros blancos y no los hemos reconocido?". abc (in Spanish). 17 December 2018. Retrieved 12 March 2020.